Search (55 results, page 1 of 3)

  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × type_ss:"el"
  1. Blosser, J.; Michaelson, R.; Routh. R.; Xia, P.: Defining the landscape of Web resources : Concluding Report of the BAER Web Resources Sub-Group (2000) 0.01
    0.0133214025 = product of:
      0.026642805 = sum of:
        0.026642805 = sum of:
          0.0042121722 = weight(_text_:a in 1447) [ClassicSimilarity], result of:
            0.0042121722 = score(doc=1447,freq=6.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.088261776 = fieldWeight in 1447, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=1447)
          0.022430632 = weight(_text_:22 in 1447) [ClassicSimilarity], result of:
            0.022430632 = score(doc=1447,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.15476047 = fieldWeight in 1447, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1447)
      0.5 = coord(1/2)
    
    Abstract
    The BAER Web Resources Group was charged in October 1999 with defining and describing the parameters of electronic resources that do not clearly belong to the categories being defined by the BAER Digital Group or the BAER Electronic Journals Group. After some difficulty identifying precisely which resources fell under the Group's charge, we finally named the following types of resources for our consideration: web sites, electronic texts, indexes, databases and abstracts, online reference resources, and networked and non-networked CD-ROMs. Electronic resources are a vast and growing collection that touch nearly every department within the Library. It is unrealistic to think one department can effectively administer all aspects of the collection. The Group then began to focus on the concern of bibliographic access to these varied resources, and to define parameters for handling or processing them within the Library. Some key elements became evident as the work progressed. * Selection process of resources to be acquired for the collection * Duplication of effort * Use of CORC * Resource Finder design * Maintenance of Resource Finder * CD-ROMs not networked * Communications * Voyager search limitations. An unexpected collaboration with the Web Development Committee on the Resource Finder helped to steer the Group to more detailed descriptions of bibliographic access. This collaboration included development of data elements for the Resource Finder database, and some discussions on Library staff processing of the resources. The Web Resources Group invited expert testimony to help the Group broaden its view to envision public use of the resources and discuss concerns related to technical services processing. The first testimony came from members of the Resource Finder Committee. Some background information on the Web Development Resource Finder Committee was shared. The second testimony was from librarians who select electronic texts. Three main themes were addressed: accessing CD-ROMs; the issue of including non-networked CD-ROMs in the Resource Finder; and, some special concerns about electronic texts. The third testimony came from librarians who select indexes and abstracts and also provide Reference services. Appendices to this report include minutes of the meetings with the experts (Appendix A), a list of proposed data elements to be used in the Resource Finder (Appendix B), and recommendations made to the Resource Finder Committee (Appendix C). Below are summaries of the key elements.
    Date
    21. 4.2002 10:22:31
  2. Wilson, R.: ¬The role of ontologies in teaching and learning (2004) 0.00
    0.0029784553 = product of:
      0.0059569106 = sum of:
        0.0059569106 = product of:
          0.011913821 = sum of:
            0.011913821 = weight(_text_:a in 3387) [ClassicSimilarity], result of:
              0.011913821 = score(doc=3387,freq=48.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.24964198 = fieldWeight in 3387, product of:
                  6.928203 = tf(freq=48.0), with freq of:
                    48.0 = termFreq=48.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies are currently a buzzword in many communities, hailed as a mechanism for making better use of the Web. They offer a shared definition of a domain that can be understood by computers, enabling them to complete more meaningful tasks. Although ontologies of different descriptions have been in development and use for some time, it is their potential as a key technology in the Semantic Web which is responsible for the current wave of interest. Communities have different expectations of the Semantic Web and how it will be realised, but it is generally believed that ontologies will play a major role. In light of their potential in this new context, much current effort is focusing an developing languages and tools. OWL (Web Ontology Language) has recently become a standard, and builds an top of existing Web languages such as XML and RDF to offer a high degree of expressiveness. A variety of tools are emerging for creating, editing and managing ontologies in OWL. Ontologies have a range of potential benefits and applications in further and higher education, including the sharing of information across educational systems, providing frameworks for learning object reuse, and enabling intelligent and personalised student support. The difficulties inherent in creating a model of a domain are being tackled, and the communities involved in ontology development are working together to achieve their vision of the Semantic Web. This Technology and Standards Watch report discusses ontologies and their role in the Semantic Web, with a special focus an their implications for teaching and learning. This report will introduce ontologies to the further and higher education community, explaining why they are being developed, what they hope to achieve, and their potential benefits to the community. Current ontology tools and standards will be described, and the emphasis will be an introducing the technology to a new audience and exploring its risks and potential applications in teaching and learning. At a time when educational programmes based an ontologies are starting to be developed, the author hopes to increase understanding of the key issues in the wider community.
    Content
    "Ontologies promise "a shared and common understanding of a domain that can be communicated between people and application systems" [1]. They attempt to formulate a thorough and rigorous representation of a domain by specifying all of its concepts, the relationships between them and the conditions and regulations of the domain. Ontologies can express hierarchical links between entities as well as other semantic relations. An example of part of an ontology is provided in Figure 1, in which it is specified not only that an author is a person and that a book is a publication, but also that an author writes a book and that a book has chapters."
  3. Choo, C.W.; Detlor, B.; Turnbull, D.: Information seeking on the Web : an integrated model of browsing and searching (2000) 0.00
    0.0026061484 = product of:
      0.0052122967 = sum of:
        0.0052122967 = product of:
          0.010424593 = sum of:
            0.010424593 = weight(_text_:a in 4438) [ClassicSimilarity], result of:
              0.010424593 = score(doc=4438,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.21843673 = fieldWeight in 4438, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4438)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents findings from a study of how knowledge workers use the Web to seek external information as part of their daily work. 34 users from 7 companies took part in the study. Participants were mainly IT-specialists, managers, and research/marketing/consulting staff working in organizations that included a large utility company; a major bank, and a consulting firm. Participants answered a detailed questionnaire and were interviewed individually in order to understand their information needs and information seeking preferences. A custom-developed WebTracker software application was installed on each of their work place PCs, and participants' Web-use activities were then recorded continuously during two-week periods
  4. Zhang, A.: Multimedia file formats on the Internet : a beginner's guide for PC users (1995) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 3212) [ClassicSimilarity], result of:
              0.010317672 = score(doc=3212,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 3212, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3212)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  5. Tillman, H.N.: Evaluating quality on the net (1996) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 5673) [ClassicSimilarity], result of:
              0.010317672 = score(doc=5673,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 5673, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5673)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Wide ranging article providing background information on the search process. Also includes a considerable amount of information about formulating searches and the difficult process of getting relevant returns from a search
  6. Atkins, H.; Lyons, C.; Ratner, H.; Risher, C.; Shillum, C.; Sidman, D.; Stevens, A.: Reference linking with DOIs : a case study (2000) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 1229) [ClassicSimilarity], result of:
              0.010317672 = score(doc=1229,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 1229, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1229)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    DOI-X is a prototype metadata database designed to support DOI lookups. The prototype is intended to address the integration of metadata registration and maintenance with basic DOI registration and maintenance, enabling publishers to use a single mechanism and a single quality-assurance process to register both DOIs and their associated metadata. It also contains the lookup mechanisms necessary to access the journal article metadata, both on a single-item lookup basis and on a batch basis, such as would facilitate reference linking. The prototype database was introduced and demonstrated to attendees at the STM International Meeting and the Frankfurt Book Fair in October 1999. This paper discusses the background for the creation of DOI-X and its salient features.
    Type
    a
  7. Spink, A.; Gunar, O.: E-Commerce Web queries : Excite and AskJeeves study (2001) 0.00
    0.0024318986 = product of:
      0.004863797 = sum of:
        0.004863797 = product of:
          0.009727594 = sum of:
            0.009727594 = weight(_text_:a in 910) [ClassicSimilarity], result of:
              0.009727594 = score(doc=910,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20383182 = fieldWeight in 910, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=910)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  8. Cataloging Internet resources : a manual and practical guide (1996) 0.00
    0.0024318986 = product of:
      0.004863797 = sum of:
        0.004863797 = product of:
          0.009727594 = sum of:
            0.009727594 = weight(_text_:a in 5903) [ClassicSimilarity], result of:
              0.009727594 = score(doc=5903,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20383182 = fieldWeight in 5903, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=5903)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  9. Weibel, S.: ¬A proposed convention for embedding metadata in HTML <June 2, 1996> (1996) 0.00
    0.0024318986 = product of:
      0.004863797 = sum of:
        0.004863797 = product of:
          0.009727594 = sum of:
            0.009727594 = weight(_text_:a in 5971) [ClassicSimilarity], result of:
              0.009727594 = score(doc=5971,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20383182 = fieldWeight in 5971, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=5971)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Van de Sompel, H.; Hochstenbach, P.: Reference linking in a hybrid library environment : part 2: SFX, a generic linking solution (1999) 0.00
    0.0024032309 = product of:
      0.0048064617 = sum of:
        0.0048064617 = product of:
          0.0096129235 = sum of:
            0.0096129235 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
              0.0096129235 = score(doc=1241,freq=20.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20142901 = fieldWeight in 1241, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the second part of two articles about reference linking in hybrid digital libraries. The first part, Frameworks for Linking described the current state-of-the-art and contrasted various approaches to the problem. It identified static and dynamic linking solutions, as well as open and closed linking frameworks. It also included an extensive bibliography. The second part describes our work at the University of Ghent to address these issues. SFX is a generic linking system that we have developed for our own needs, but its underlying concepts can be applied in a wide range of digital libraries. This is a description of the approach to the creation of extended services in a hybrid library environment that has been taken by the Library Automation team at the University of Ghent. The ongoing research has been grouped under the working title Special Effects (SFX). In order to explain the SFX-concepts in a comprehensive way, the discussion will start with a brief description of pre-SFX experiments. Thereafter, the basics of the SFX-approach are explained briefly, in combination with concrete implementation choices taken for the Elektron SFX-linking experiment. Elektron was the name of a modest digital library collaboration between the Universities of Ghent, Louvain and Antwerp.
    Type
    a
  11. Koch, T.; Ardö, A.; Noodén, L.: ¬The construction of a robot-generated subject index : DESIRE II D3.6a, Working Paper 1 (1999) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 1668) [ClassicSimilarity], result of:
              0.008935366 = score(doc=1668,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 1668, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1668)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This working paper describes the creation of a test database to carry out the automatic classification tasks of the DESIRE II work package D3.6a on. It is an improved version of NetLab's existing "All" Engineering database created after a comparative study of the outcome of two different approaches to collecting the documents. These two methods were selected from seven different general methodologies to build robot-generated subject indices, presented in this paper. We found a surprisingly low overlap between the Engineering link collections we used as seed pages for the robot and subsequently an even more surprisingly low overlap between the resources collected by the two different approaches. That inspite of using basically the same services to start the harvesting process from. A intellectual evaluation of the contents of both databases showed almost exactly the same percentage of relevant documents (77%), indicating that the main difference between those aproaches was the coverage of the resulting database.
  12. Warnick, W.L.; Leberman, A.; Scott, R.L.; Spence, K.J.; Johnsom, L.A.; Allen, V.S.: Searching the deep Web : directed query engine applications at the Department of Energy (2001) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 1215) [ClassicSimilarity], result of:
              0.008935366 = score(doc=1215,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 1215, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1215)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Directed Query Engines, an emerging class of search engine specifically designed to access distributed resources on the deep web, offer the opportunity to create inexpensive digital libraries. Already, one such engine, Distributed Explorer, has been used to select and assemble high quality information resources and incorporate them into publicly available systems for the physical sciences. By nesting Directed Query Engines so that one query launches several other engines in a cascading fashion, enormous virtual collections may soon be assembled to form a comprehensive information infrastructure for the physical sciences. Once a Directed Query Engine has been configured for a set of information resources, distributed alerts tools can provide patrons with personalized, profile-based notices of recent additions to any of the selected resources. Due to the potentially enormous size and scope of Directed Query Engine applications, consideration must be given to issues surrounding the representation of large quantities of information from multiple, heterogeneous sources.
    Type
    a
  13. Tillman, H.N.; Howe, W.: Tips and tricks for searching the net (1996) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 5674) [ClassicSimilarity], result of:
              0.00859806 = score(doc=5674,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 5674, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5674)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As the name of the article implies this site has a list of 20 good tips and tricks to assist you in the search process. Note: the tips and tricks are .gifs of what appears to be a PowerPoint presentation and thus can take time to download
  14. Subramanian, S.; Shafer, K.E.: Clustering (1998) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 1103) [ClassicSimilarity], result of:
              0.00859806 = score(doc=1103,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 1103, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1103)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article presents our exploration of computer science clustering algorithms as they relate to the Scorpion system. Scorpion is a research project at OCLC that explores the indexing and cataloging of electronic resources. For a more complete description of the Scorpion, please visit the Scorpion Web site at <http://purl.oclc.org/scorpion>
  15. Shafer, K.E.: Evaluating Scorpion results (1998) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 1569) [ClassicSimilarity], result of:
              0.00859806 = score(doc=1569,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 1569, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1569)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Scorpion is a research project at OCLC that builds tools for automatic subject assignment by combining library science and information retrieval techniques. A thesis of Scorpion is that the Dewey Decimal Classification (Dewey) can be used to perform automatic subject assignment for electronic items.
  16. Cross, P.: DESIRE: making the most of the Web (2000) 0.00
    0.0021279112 = product of:
      0.0042558224 = sum of:
        0.0042558224 = product of:
          0.008511645 = sum of:
            0.008511645 = weight(_text_:a in 2146) [ClassicSimilarity], result of:
              0.008511645 = score(doc=2146,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17835285 = fieldWeight in 2146, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2146)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Lagoze, C.; Lynch, C.A.; Daniel, R. Jr.: ¬The Warwick Framework : a container architecture for aggregating sets of metadata, 24.6.1996 (1996) 0.00
    0.0021279112 = product of:
      0.0042558224 = sum of:
        0.0042558224 = product of:
          0.008511645 = sum of:
            0.008511645 = weight(_text_:a in 5972) [ClassicSimilarity], result of:
              0.008511645 = score(doc=5972,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17835285 = fieldWeight in 5972, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5972)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  18. Koch, T.; Ardö, A.: Automatic classification of full-text HTML-documents from one specific subject area : DESIRE II D3.6a, Working Paper 2 (2000) 0.00
    0.0021060861 = product of:
      0.0042121722 = sum of:
        0.0042121722 = product of:
          0.0084243445 = sum of:
            0.0084243445 = weight(_text_:a in 1667) [ClassicSimilarity], result of:
              0.0084243445 = score(doc=1667,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17652355 = fieldWeight in 1667, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1667)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    1 Introduction / 2 Method overview / 3 Ei thesaurus preprocessing / 4 Automatic classification process: 4.1 Matching -- 4.2 Weighting -- 4.3 Preparation for display / 5 Results of the classification process / 6 Evaluations / 7 Software / 8 Other applications / 9 Experiments with universal classification systems / References / Appendix A: Ei classification service: Software / Appendix B: Use of the classification software as subject filter in a WWW harvester.
  19. Jacobsen, G.: Webarchiving internationally : interoperability in the future? (2007) 0.00
    0.0020392092 = product of:
      0.0040784185 = sum of:
        0.0040784185 = product of:
          0.008156837 = sum of:
            0.008156837 = weight(_text_:a in 699) [ClassicSimilarity], result of:
              0.008156837 = score(doc=699,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.1709182 = fieldWeight in 699, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=699)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Several national libraries are collecting parts of the Internet or planning to do so, but in order to render a complete impression of the Internet, web archives must be interoperable, enabling a user to make seamless searches. A questionnaire on this issue was sent to 95 national libraries. The answers show agreement with this goal and that web archiving is becoming more common. Partnering is a key ingredient in moving forward and a useful distinction is suggested in the labels curatorial partners (archives, museums) and technical partners (private companies, universities, other research institutions). Working with private, for-profit companies may also force national libraries to leave room for unorthodox thinking and experimenting. The biggest challenge right now is to make legal deposit, copyright and other legislation adapt to an Internet world, so we can preserve it and make it available to present and future generation.
  20. OWLED 2009; OWL: Experiences and Directions, Sixth International Workshop, Chantilly, Virginia, USA, 23-24 October 2009, Co-located with ISWC 2009. (2009) 0.00
    0.0020392092 = product of:
      0.0040784185 = sum of:
        0.0040784185 = product of:
          0.008156837 = sum of:
            0.008156837 = weight(_text_:a in 3391) [ClassicSimilarity], result of:
              0.008156837 = score(doc=3391,freq=40.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.1709182 = fieldWeight in 3391, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3391)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The W3C OWL Web Ontology Language has been a W3C recommendation since 2004, and specification of its successor OWL 2 is being finalised. OWL plays an important role in an increasing number and range of applications and as experience using the language grows, new ideas for further extending its reach continue to be proposed. The OWL: Experiences and Direction (OWLED) workshop series is a forum for practitioners in industry and academia, tool developers, and others interested in OWL to describe real and potential applications, to share experience, and to discuss requirements for language extensions and modifications. The workshop will bring users, implementors and researchers together to measure the state of need against the state of the art, and to set an agenda for research and deployment in order to incorporate OWL-based technologies into new applications. This year's 2009 OWLED workshop will be co-located with the Eighth International Semantic Web Conference (ISWC), and the Third International Conference on Web Reasoning and Rule Systems (RR2009). It will be held in Chantilly, VA, USA on October 23 - 24, 2009. The workshop will concentrate on issues related to the development and W3C standardization of OWL 2, and beyond, but other issues related to OWL are also of interest, particularly those related to the task forces set up at OWLED 2007. As usual, the workshop will try to encourage participants to work together and will give space for discussions on various topics, to be decided and published at some point in the future. We ask participants to have a look at these topics and the accepted submissions before the workshop, and to prepare single "slides" that can be presented during these discussions. There will also be formal presentation of submissions to the workshop.
    Content
    Long Papers * Suggestions for OWL 3, Pascal Hitzler. * BestMap: Context-Aware SKOS Vocabulary Mappings in OWL 2, Rinke Hoekstra. * Mechanisms for Importing Modules, Bijan Parsia, Ulrike Sattler and Thomas Schneider. * A Syntax for Rules in OWL 2, Birte Glimm, Matthew Horridge, Bijan Parsia and Peter Patel-Schneider. * PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine, Markus Stocker and Evren Sirin. * The OWL API: A Java API for Working with OWL 2 Ontologies, Matthew Horridge and Sean Bechhofer. * From Justifications to Proofs for Entailments in OWL, Matthew Horridge, Bijan Parsia and Ulrike Sattler. * A Solution for the Man-Man Problem in the Family History Knowledge Base, Dmitry Tsarkov, Ulrike Sattler and Robert Stevens. * Towards Integrity Constraints in OWL, Evren Sirin and Jiao Tao. * Processing OWL2 ontologies using Thea: An application of logic programming, Vangelis Vassiliadis, Jan Wielemaker and Chris Mungall. * Reasoning in Metamodeling Enabled Ontologies, Nophadol Jekjantuk, Gerd Gröner and Jeff Z. Pan.
    Short Papers * A Database Backend for OWL, Jörg Henss, Joachim Kleb and Stephan Grimm. * Unifying SysML and OWL, Henson Graves. * The OWLlink Protocol, Thorsten Liebig, Marko Luther and Olaf Noppens. * A Reasoning Broker Framework for OWL, Juergen Bock, Tuvshintur Tserendorj, Yongchun Xu, Jens Wissmann and Stephan Grimm. * Change Representation For OWL 2 Ontologies, Raul Palma, Peter Haase, Oscar Corcho and Asunción Gómez-Pérez. * Practical Aspects of Query Rewriting for OWL 2, Héctor Pérez-Urbina, Ian Horrocks and Boris Motik. * CSage: Use of a Configurable Semantically Attributed Graph Editor as Framework for Editing and Visualization, Lawrence Levin. * A Conformance Test Suite for the OWL 2 RL/RDF Rules Language and the OWL 2 RDF-Based Semantics, Michael Schneider and Kai Mainzer. * Improving the Data Quality of Relational Databases using OBDA and OWL 2 QL, Olivier Cure. * Temporal Classes and OWL, Natalya Keberle. * Using Ontologies for Medical Image Retrieval - An Experiment, Jasmin Opitz, Bijan Parsia and Ulrike Sattler. * Task Representation and Retrieval in an Ontology-Guided Modelling System, Yuan Ren, Jens Lemcke, Andreas Friesen, Tirdad Rahmani, Srdjan Zivkovic, Boris Gregorcic, Andreas Bartho, Yuting Zhao and Jeff Z. Pan. * A platform for reasoning with OWL-EL knowledge bases in a Peer-to-Peer environment, Alexander De Leon and Michel Dumontier. * Axiomé: a Tool for the Elicitation and Management of SWRL Rules, Saeed Hassanpour, Martin O'Connor and Amar Das. * SQWRL: A Query Language for OWL, Martin O'Connor and Amar Das. * Classifying ELH Ontologies In SQL Databases, Vincent Delaitre and Yevgeny Kazakov. * A Semantic Web Approach to Represent and Retrieve Information in a Corporate Memory, Ana B. Rios-Alvarado, R. Carolina Medina-Ramirez and Ricardo Marcelin-Jimenez. * Towards a Graphical Notation for OWL 2, Elisa Kendall, Roy Bell, Roger Burkhart, Mark Dutra and Evan Wallace.
    Demo/Position Papers * Conjunctive Query Answering in Distributed Ontology Systems for Ontologies with Large OWL ABoxes, Xueying Chen and Michel Dumontier. * Node-Link and Containment Methods in Ontology Visualization, Julia Dmitrieva and Fons J. Verbeek. * A JC3IEDM OWL-DL Ontology, Steven Wartik. * Semantically Enabled Temporal Reasoning in a Virtual Observatory, Patrick West, Eric Rozell, Stephan Zednik, Peter Fox and Deborah L. McGuinness. * Developing an Ontology from the Application Up, James Malone, Tomasz Adamusiak, Ele Holloway, Misha Kapushesky and Helen Parkinson.

Years

Types

Classifications