Search (30 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2010 TO 2020}
  1. Hjoerland, B.: Classification (2017) 0.02
    0.02258427 = product of:
      0.09033708 = sum of:
        0.09033708 = weight(_text_:term in 3610) [ClassicSimilarity], result of:
          0.09033708 = score(doc=3610,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.41242266 = fieldWeight in 3610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0625 = fieldNorm(doc=3610)
      0.25 = coord(1/4)
    
    Abstract
    This article presents and discusses definitions of the term "classification" and the related concepts "Concept/conceptualization," "categorization," "ordering," "taxonomy" and "typology." It further presents and discusses theories of classification including the influences of Aristotle and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly presented and discussed.
  2. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.01
    0.013071639 = product of:
      0.026143279 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 2945) [ClassicSimilarity], result of:
              0.028250674 = score(doc=2945,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.25 = coord(1/4)
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.038161222 = score(doc=2945,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  3. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.01
    0.013071639 = product of:
      0.026143279 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 4152) [ClassicSimilarity], result of:
              0.028250674 = score(doc=4152,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.25 = coord(1/4)
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.038161222 = score(doc=4152,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  4. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.01
    0.0095403055 = product of:
      0.038161222 = sum of:
        0.038161222 = product of:
          0.076322444 = sum of:
            0.076322444 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.076322444 = score(doc=3176,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 5.2017 18:46:22
  5. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.0055651786 = product of:
      0.022260714 = sum of:
        0.022260714 = product of:
          0.04452143 = sum of:
            0.04452143 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.04452143 = score(doc=3494,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.22-36
  6. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.038161222 = score(doc=1425,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Vukadin, A.; Slavic, A.: Challenges of facet analysis and concept placement in Universal Classifications : the example of architecture in UDC (2014) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.038161222 = score(doc=1428,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.00
    0.003975128 = product of:
      0.015900511 = sum of:
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.031801023 = score(doc=1417,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.00
    0.003975128 = product of:
      0.015900511 = sum of:
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.031801023 = score(doc=1418,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.00
    0.003975128 = product of:
      0.015900511 = sum of:
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.031801023 = score(doc=1778,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    8. 4.2015 16:22:13
  11. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.00
    0.003975128 = product of:
      0.015900511 = sum of:
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.031801023 = score(doc=2282,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    8.11.2015 21:27:22
  12. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2013) 0.00
    0.0032901266 = product of:
      0.013160506 = sum of:
        0.013160506 = product of:
          0.052642025 = sum of:
            0.052642025 = weight(_text_:based in 789) [ClassicSimilarity], result of:
              0.052642025 = score(doc=789,freq=10.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.37218451 = fieldWeight in 789, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=789)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Any ontological theory commits us to accept and classify a number of phenomena in a more or less specific way-and vice versa: a classification tends to reveal the theoretical outlook of its creator. Objects and their descriptions and relations are not just "given," but determined by theories. Knowledge is fallible, and consensus is rare. By implication, knowledge organization has to consider different theories/views and their foundations. Bibliographical classifications depend on subject knowledge and on the same theories as corresponding scientific and scholarly classifications. Some classifications are based on logical distinctions, others on empirical examinations, and some on mappings of common ancestors or on establishing functional criteria. To evaluate a classification is to involve oneself in the research which has produced the given classification. Because research is always based more or less on specific epistemological ideals (e.g., empiricism, rationalism, historicism, or pragmatism), the evaluation of classification includes the evaluation of the epistemological foundations of the research on which given classifications have been based. The field of knowledge organization itself is based on different approaches and traditions such as user-based and cognitive views, facet-analytical views, numeric taxonomic approaches, bibliometrics, and domain-analytic approaches. These approaches and traditions are again connected to epistemological views, which have to be considered. Only the domain-analytic view is fully committed to exploring knowledge organization in the light of subject knowledge and substantial scholarly theories.
  13. Szostak, R.: Universal and domain-specific classifications from an interdisciplinary perspective (2010) 0.00
    0.0023542228 = product of:
      0.009416891 = sum of:
        0.009416891 = product of:
          0.037667565 = sum of:
            0.037667565 = weight(_text_:based in 3516) [ClassicSimilarity], result of:
              0.037667565 = score(doc=3516,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.26631355 = fieldWeight in 3516, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3516)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    A universal non-discipline-based classification is a complement to, rather than substitute for, domain-specific classifications. Cognitive work analysis suggests that especially interdisciplinary researchers but also specialized researchers would benefit from both types of classification. Both practical and theoretical considerations point to complementarity. The research efforts of scholars pursuing both types of classification can thus usefully reinforce each other.
  14. Gnoli, C.; Ledl, A.; Park, Z.; Trzmielewski, M.: Phenomenon-based vs. disciplinary classification : possibilities for evaluating and for mapping (2018) 0.00
    0.0023542228 = product of:
      0.009416891 = sum of:
        0.009416891 = product of:
          0.037667565 = sum of:
            0.037667565 = weight(_text_:based in 4804) [ClassicSimilarity], result of:
              0.037667565 = score(doc=4804,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.26631355 = fieldWeight in 4804, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4804)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
  15. Hjoerland, B.: Facet analysis : the logical approach to knowledge organization (2013) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 2720) [ClassicSimilarity], result of:
              0.033293735 = score(doc=2720,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 2720, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2720)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    The facet-analytic paradigm is probably the most distinct approach to knowledge organization within Library and Information Science, and in many ways it has dominated what has be termed "modern classification theory". It was mainly developed by S.R. Ranganathan and the British Classification Research Group, but it is mostly based on principles of logical division developed more than two millennia ago. Colon Classification (CC) and Bliss 2 (BC2) are among the most important systems developed on this theoretical basis, but it has also influenced the development of other systems, such as the Dewey Decimal Classification (DDC) and is also applied in many websites. It still has a strong position in the field and it is the most explicit and "pure" theoretical approach to knowledge organization (KO) (but it is not by implication necessarily also the most important one). The strength of this approach is its logical principles and the way it provides structures in knowledge organization systems (KOS). The main weaknesses are (1) its lack of empirical basis and (2) its speculative ordering of knowledge without basis in the development or influence of theories and socio-historical studies. It seems to be based on the problematic assumption that relations between concepts are a priori and not established by the development of models, theories and laws.
  16. Kleineberg, M.: Integrative levels (2017) 0.00
    0.002059945 = product of:
      0.00823978 = sum of:
        0.00823978 = product of:
          0.03295912 = sum of:
            0.03295912 = weight(_text_:based in 3840) [ClassicSimilarity], result of:
              0.03295912 = score(doc=3840,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23302436 = fieldWeight in 3840, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3840)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This article provides a historical overview and conceptual clarification of the idea of integrative levels as an organizing principle. It will be demonstrated that this concept has found different articulations (e.g., levels of integration, levels of organization, levels of complexity, levels of granularity, nested hierarchy, specification hierarchy, hierarchical integration, progressive integration, holarchy, superformation, self-organization cycles) and widespread applications based on various, often unrelated theoretical and disciplinary backgrounds. In order to determine its role in the field of knowledge organization, some common misconceptions and major criticisms will be reconsidered in light of a broader multidisciplinary context. In particular, it will be shown how this organizing principle has been fruitfully applied to human-related research areas such as psychology, social sciences, or humanities in terms of integrative levels of knowing.
  17. Szostak, R.: Classifying the humanities (2014) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 1084) [ClassicSimilarity], result of:
              0.028250674 = score(doc=1084,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 1084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1084)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    A synthetic and universal approach to classification which allows the free combination of basic concepts would better address a variety of challenges in classifying both humanities scholarship and the works of art (including literature) that humanists study. Four key characteristics of this classificatory approach are stressed: a universal non-discipline-based approach, a synthetic approach that allows free combination of any concepts but stresses a sentence-like structure, emphasis on basic concepts (for which there are broadly shared understandings across groups and individuals), and finally classification of works also in terms of the theories, methods, and perspectives applied. The implications of these four characteristics, alone or (often) in concert, for many aspects of classification in the humanities are discussed. Several advantages are found both for classifying humanities scholarship and works of art. The se four characteristics are each found in the Basic Concepts Classification (which is briefly compared to other faceted classifications), but each could potentially be adopted elsewhere as well.
  18. Loehrlein, A.J.; Lemieux, V.L.; Bennett, M.: ¬The classification of financial products (2014) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 1196) [ClassicSimilarity], result of:
              0.028250674 = score(doc=1196,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 1196, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1196)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    In the wake of the global financial crisis, the U.S. Dodd- Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank) was enacted to provide increased transparency in financial markets. In response to Dodd-Frank, a series of rules relating to swaps record keeping have been issued, and one such rule calls for the creation of a financial products classification system. The manner in which financial products are classified will have a profound effect on data integration and analysis in the financial industry. This article considers various approaches that can be taken when classifying financial products and recommends the use of facet analysis. The article argues that this type of analysis is flexible enough to accommodate multiple viewpoints and rigorous enough to facilitate inferences that are based on the hierarchical structure. Various use cases are examined that pertain to the organization of financial products. The use cases confirm the practical utility of taxonomies that are designed according to faceted principles.
  19. Mayor, C.; Robinson, L.: Ontological realism, concepts and classification in molecular biology : development and application of the gene ontology (2014) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 1771) [ClassicSimilarity], result of:
              0.028250674 = score(doc=1771,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 1771, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1771)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this article is to evaluate the development and use of the gene ontology (GO), a scientific vocabulary widely used in molecular biology databases, with particular reference to the relation between the theoretical basis of the GO, and the pragmatics of its application. Design/methodology/approach - The study uses a combination of bibliometric analysis, content analysis and discourse analysis. These analyses focus on details of the ways in which the terms of the ontology are amended and deleted, and in which they are applied by users. Findings - Although the GO is explicitly based on an objective realist epistemology, a considerable extent of subjectivity and social factors are evident in its development and use. It is concluded that bio-ontologies could beneficially be extended to be pluralist, while remaining objective, taking a view of concepts closer to that of more traditional controlled vocabularies. Originality/value - This is one of very few studies which evaluate the development of a formal ontology in relation to its conceptual foundations, and the first to consider the GO in this way.
  20. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.00
    0.0016646868 = product of:
      0.0066587473 = sum of:
        0.0066587473 = product of:
          0.02663499 = sum of:
            0.02663499 = weight(_text_:based in 311) [ClassicSimilarity], result of:
              0.02663499 = score(doc=311,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.18831211 = fieldWeight in 311, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=311)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.