Search (189 results, page 1 of 10)

  • × language_ss:"e"
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.03
    0.030058773 = product of:
      0.060117546 = sum of:
        0.006246961 = weight(_text_:in in 3494) [ClassicSimilarity], result of:
          0.006246961 = score(doc=3494,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.03316972 = weight(_text_:und in 3494) [ClassicSimilarity], result of:
          0.03316972 = score(doc=3494,freq=8.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.34282678 = fieldWeight in 3494, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.04140173 = score(doc=3494,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Pages
    S.22-36
    Series
    Fortschritte in der Wissensorganisation; Bd.13
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  2. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.02
    0.0153987575 = product of:
      0.04619627 = sum of:
        0.010709076 = weight(_text_:in in 3176) [ClassicSimilarity], result of:
          0.010709076 = score(doc=3176,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 3176, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=3176)
        0.035487194 = product of:
          0.07097439 = sum of:
            0.07097439 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.07097439 = score(doc=3176,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    6. 5.2017 18:46:22
    Footnote
    Wiederabdruck in: Knowledge organization. 44(2017) no.2, S.129-134.
  3. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.013681616 = product of:
      0.041044846 = sum of:
        0.006310384 = weight(_text_:in in 2874) [ClassicSimilarity], result of:
          0.006310384 = score(doc=2874,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10626988 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.03473446 = product of:
          0.06946892 = sum of:
            0.06946892 = weight(_text_:ausbildung in 2874) [ClassicSimilarity], result of:
              0.06946892 = score(doc=2874,freq=2.0), product of:
                0.23429902 = queryWeight, product of:
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.043654136 = queryNorm
                0.29649687 = fieldWeight in 2874, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3671665 = idf(docFreq=560, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
    Footnote
    Beitrag in einem Themenheft: UK library & information schools: UCL SLAIS.
    Theme
    Ausbildung
  4. Kaula, P.N.: Canons in analytico-synthetic classification (1979) 0.01
    0.013322966 = product of:
      0.039968897 = sum of:
        0.0071393843 = weight(_text_:in in 1428) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=1428,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 1428, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1428)
        0.032829512 = weight(_text_:und in 1428) [ClassicSimilarity], result of:
          0.032829512 = score(doc=1428,freq=6.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.33931053 = fieldWeight in 1428, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=1428)
      0.33333334 = coord(2/6)
    
    Source
    Klassifikation und Erkenntnis II. Proc. der Plenarvorträge und der Sektion 2 u. 3 "Wissensdarstellung und Wissensvermittlung" der 3. Fachtagung der Gesellschaft für Klassifikation, Königstein/Ts., 5.-6.4.1979
  5. Svenonius, E.: Facets as semantic categories (1979) 0.01
    0.012929637 = product of:
      0.03878891 = sum of:
        0.014166778 = weight(_text_:in in 1427) [ClassicSimilarity], result of:
          0.014166778 = score(doc=1427,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 1427, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1427)
        0.024622133 = weight(_text_:und in 1427) [ClassicSimilarity], result of:
          0.024622133 = score(doc=1427,freq=6.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.2544829 = fieldWeight in 1427, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1427)
      0.33333334 = coord(2/6)
    
    Abstract
    The paper looks at the semantic and syntactic components of facet definition. In synthetic classificatory languages, primitive terms are categorized into facets; facet information, when, is used in stating the syntactic rules for combining primitive terms into the acceptable (well-formed) complex expressions in the language. In other words, the structure of a synthetic classificatory language can be defined in terms of the facets recognized in the language and the syntactic rules employed by the language. Thus, facets are the "grammatical categories" of classificatory languages and their definition is the first step in formulating structural descriptions of such languages. As well, the study of how facets are defined can give some insight into how language is used to embody information
    Source
    Klassifikation und Erkenntnis II. Proc. der Plenarvorträge und der Sektion 2 u. 3 "Wissensdarstellung und Wissensvermittlung" der 3. Fachtagung der Gesellschaft für Klassifikation, Königstein/Ts., 5.-6.4.1979
  6. Scerri, E.R.: ¬The periodic table : its story and its significance (2007) 0.01
    0.012651212 = product of:
      0.037953634 = sum of:
        0.011358692 = weight(_text_:in in 2492) [ClassicSimilarity], result of:
          0.011358692 = score(doc=2492,freq=36.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1912858 = fieldWeight in 2492, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2492)
        0.026594942 = weight(_text_:und in 2492) [ClassicSimilarity], result of:
          0.026594942 = score(doc=2492,freq=28.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.27487293 = fieldWeight in 2492, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2492)
      0.33333334 = coord(2/6)
    
    Abstract
    The periodic table is one of the most potent icons in science. It lies at the core of chemistry and embodies the most fundamental principles of the field. The one definitive text on the development of the periodic table by van Spronsen (1969), has been out of print for a considerable time. The present book provides a successor to van Spronsen, but goes further in giving an evaluation of the extent to which modern physics has, or has not, explained the periodic system. The book is written in a lively style to appeal to experts and interested lay-persons alike. The Periodic Table begins with an overview of the importance of the periodic table and of the elements and it examines the manner in which the term 'element' has been interpreted by chemists and philosophers. The book then turns to a systematic account of the early developments that led to the classification of the elements including the work of Lavoisier, Boyle and Dalton and Cannizzaro. The precursors to the periodic system, like Dobereiner and Gmelin, are discussed. In chapter 3 the discovery of the periodic system by six independent scientists is examined in detail. Two chapters are devoted to the discoveries of Mendeleev, the leading discoverer, including his predictions of new elements and his accommodation of already existing elements. Chapters 6 and 7 consider the impact of physics including the discoveries of radioactivity and isotopy and successive theories of the electron including Bohr's quantum theoretical approach. Chapter 8 discusses the response to the new physical theories by chemists such as Lewis and Bury who were able to draw on detailed chemical knowledge to correct some of the early electronic configurations published by Bohr and others. Chapter 9 provides a critical analysis of the extent to which modern quantum mechanics is, or is not, able to explain the periodic system from first principles. Finally, chapter 10 considers the way that the elements evolved following the Big Bang and in the interior of stars. The book closes with an examination of further chemical aspects including lesser known trends within the periodic system such as the knight's move relationship and secondary periodicity, as well at attempts to explain such trends.
    Classification
    VB 2400 Chemie und Pharmazie / Bibliographien und Nachschlagewerke, Geschichte und Didaktik der Chemie und Pharmazie, Betriebssicherheit / Geschichte der Chemie und Pharmazie / Geschichte einzelner Probleme und Teilgebiete der Chemie und Pharmazie / Allgemeines
    Footnote
    Rez. in: KO 35(2008) no.4, S.251-254 (B. Hjoerland): "The book is about the classification of chemical elements known as the periodical system. It is described as "one of the most potent icons in science [.] One sees periodic tables everywhere: in industrial labs, workshops, academic labs, and of course, lecture halls" (p. xiii). Among all taxonomies in all domains, there is probably none more respected and more useful than this one. As Scerri states (p. 25): The periodic table ranks as one of the most fruitful and unifying ideas in the whole of modern science, comparable perhaps with Darwin's theory of evolution by natural selection. Unlike such theories as Newtonian mechanics, the periodic table has not been falsified by developments in modern physics but has evolved while remaining essentially unchanged. After evolving for nearly 150 years through the work of numerous individuals, the periodic table remains at the heart of chemistry. This is mainly because it is of immense practical benefit for making predictions about all manner of chemical and physical properties of the elements and possibilities for bond formation. The periodic system provides the basic criteria for organizing knowledge about all the material stuff in the entire universe. It is thus a model that anybody with interests in knowledge organization (KO) should know. Knowledge about the history, philosophy and status of the periodic system also provides important insight for knowledge organization in general. . . . Scerri's book demonstrates how one of the most important classification systems has evolved and what kinds of conceptualizations and classification criteria are at work in it. It is probably the best book about the best classification system ever constructed. It should belong to any library supporting teaching and research in knowledge organization."
    RVK
    VB 2400 Chemie und Pharmazie / Bibliographien und Nachschlagewerke, Geschichte und Didaktik der Chemie und Pharmazie, Betriebssicherheit / Geschichte der Chemie und Pharmazie / Geschichte einzelner Probleme und Teilgebiete der Chemie und Pharmazie / Allgemeines
  7. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.01
    0.012645634 = product of:
      0.0379369 = sum of:
        0.014278769 = weight(_text_:in in 7242) [ClassicSimilarity], result of:
          0.014278769 = score(doc=7242,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24046129 = fieldWeight in 7242, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=7242)
        0.02365813 = product of:
          0.04731626 = sum of:
            0.04731626 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
              0.04731626 = score(doc=7242,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.30952093 = fieldWeight in 7242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7242)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
  8. Vukadin, A.; Slavic, A.: Challenges of facet analysis and concept placement in Universal Classifications : the example of architecture in UDC (2014) 0.01
    0.012097421 = product of:
      0.036292262 = sum of:
        0.018548666 = weight(_text_:in in 1428) [ClassicSimilarity], result of:
          0.018548666 = score(doc=1428,freq=24.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.3123684 = fieldWeight in 1428, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1428)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.035487194 = score(doc=1428,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The paper discusses the challenges of faceted vocabulary organization in universal classifications which treat the universe of knowledge as a coherent whole and in which the concepts and subjects in different disciplines are shared, related and combined. The authors illustrate the challenges of the facet analytical approach using, as an example, the revision of class 72 in UDC. The paper reports on the research undertaken in 2013 as preparation for the revision. This consisted of analysis of concept organization in the UDC schedules in comparison with the Art & Architecture Thesaurus and class W of the Bliss Bibliographic Classification. The paper illustrates how such research can contribute to a better understanding of the field and may lead to improvements in the facet structure of this segment of the UDC vocabulary.
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.01
    0.010636792 = product of:
      0.031910375 = sum of:
        0.014166778 = weight(_text_:in in 4152) [ClassicSimilarity], result of:
          0.014166778 = score(doc=4152,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 4152, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4152)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.035487194 = score(doc=4152,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  10. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.01
    0.010506973 = product of:
      0.031520918 = sum of:
        0.010820055 = weight(_text_:in in 7241) [ClassicSimilarity], result of:
          0.010820055 = score(doc=7241,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1822149 = fieldWeight in 7241, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7241)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
              0.04140173 = score(doc=7241,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 7241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7241)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  11. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.010506973 = product of:
      0.031520918 = sum of:
        0.010820055 = weight(_text_:in in 166) [ClassicSimilarity], result of:
          0.010820055 = score(doc=166,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1822149 = fieldWeight in 166, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
              0.04140173 = score(doc=166,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 166, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=166)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The idea of sameness is used to gather material in classifications. However, it is also used to separate what is different. Sameness and difference as guiding principles of classification seem obvious but are actually fundamental characteristics specifically related to Western culture. Sameness is not a singular factor, but has the potential to represent multiple characteristics or facets. This article explores the ramifications of which characteristics are used to define classifications and in what order. It explains the primacy of division by discipline, its origins in Western philosophy, and the cultural specificity that results. The Dewey Decimal Classification is used as an example throughout.
    Date
    10. 9.2000 17:38:22
  12. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.01
    0.00990557 = product of:
      0.02971671 = sum of:
        0.011973113 = weight(_text_:in in 1425) [ClassicSimilarity], result of:
          0.011973113 = score(doc=1425,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 1425, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.035487194 = score(doc=1425,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  13. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.009632261 = product of:
      0.02889678 = sum of:
        0.014110449 = weight(_text_:in in 1418) [ClassicSimilarity], result of:
          0.014110449 = score(doc=1418,freq=20.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2376267 = fieldWeight in 1418, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.029572664 = score(doc=1418,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  14. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.01
    0.009484224 = product of:
      0.028452672 = sum of:
        0.010709076 = weight(_text_:in in 2945) [ClassicSimilarity], result of:
          0.010709076 = score(doc=2945,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 2945, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.035487194 = score(doc=2945,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
    Content
    Beitrag in einem Special issue: A Festschrift for Clare Beghtol
  15. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.01
    0.0091357 = product of:
      0.027407099 = sum of:
        0.012620768 = weight(_text_:in in 2282) [ClassicSimilarity], result of:
          0.012620768 = score(doc=2282,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 2282, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.029572664 = score(doc=2282,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
  16. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.01
    0.009005977 = product of:
      0.027017929 = sum of:
        0.009274333 = weight(_text_:in in 780) [ClassicSimilarity], result of:
          0.009274333 = score(doc=780,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1561842 = fieldWeight in 780, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.035487194 = score(doc=780,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  17. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.01
    0.008863994 = product of:
      0.02659198 = sum of:
        0.011805649 = weight(_text_:in in 3483) [ClassicSimilarity], result of:
          0.011805649 = score(doc=3483,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 3483, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.029572664 = score(doc=3483,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Footnote
    Vgl.: Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification". In: Knowledge organization. 37(2010) no.2, S.111-120.
    Pages
    S.19-22
    Series
    Advances in knowledge organization; vol.9
  18. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.01
    0.008863994 = product of:
      0.02659198 = sum of:
        0.011805649 = weight(_text_:in in 1417) [ClassicSimilarity], result of:
          0.011805649 = score(doc=1417,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 1417, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.029572664 = score(doc=1417,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  19. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.01
    0.008863994 = product of:
      0.02659198 = sum of:
        0.011805649 = weight(_text_:in in 1778) [ClassicSimilarity], result of:
          0.011805649 = score(doc=1778,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 1778, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.029572664 = score(doc=1778,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
  20. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.01
    0.008849095 = product of:
      0.026547283 = sum of:
        0.014718218 = weight(_text_:in in 2763) [ClassicSimilarity], result of:
          0.014718218 = score(doc=2763,freq=34.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24786183 = fieldWeight in 2763, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
        0.011829065 = product of:
          0.02365813 = sum of:
            0.02365813 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.02365813 = score(doc=2763,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas

Authors

Types

  • a 164
  • m 21
  • el 7
  • s 4
  • b 1
  • More… Less…