Search (41 results, page 1 of 3)

  • × language_ss:"e"
  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.04
    0.037649848 = product of:
      0.075299695 = sum of:
        0.05431654 = weight(_text_:data in 5903) [ClassicSimilarity], result of:
          0.05431654 = score(doc=5903,freq=18.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.36682853 = fieldWeight in 5903, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5903)
        0.020983158 = product of:
          0.041966315 = sum of:
            0.041966315 = weight(_text_:processing in 5903) [ClassicSimilarity], result of:
              0.041966315 = score(doc=5903,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22138305 = fieldWeight in 5903, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  2. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.04
    0.03670788 = product of:
      0.07341576 = sum of:
        0.051210128 = weight(_text_:data in 759) [ClassicSimilarity], result of:
          0.051210128 = score(doc=759,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34584928 = fieldWeight in 759, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.044411276 = score(doc=759,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  3. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.03
    0.0314639 = product of:
      0.0629278 = sum of:
        0.043894395 = weight(_text_:data in 4649) [ClassicSimilarity], result of:
          0.043894395 = score(doc=4649,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 4649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.038066804 = score(doc=4649,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  4. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.03
    0.0295933 = product of:
      0.0591866 = sum of:
        0.044349268 = weight(_text_:data in 3062) [ClassicSimilarity], result of:
          0.044349268 = score(doc=3062,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29951423 = fieldWeight in 3062, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.014837332 = product of:
          0.029674664 = sum of:
            0.029674664 = weight(_text_:processing in 3062) [ClassicSimilarity], result of:
              0.029674664 = score(doc=3062,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15654145 = fieldWeight in 3062, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  5. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 51) [ClassicSimilarity], result of:
          0.03657866 = score(doc=51,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 51, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 51) [ClassicSimilarity], result of:
              0.042392377 = score(doc=51,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 51, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=51)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  6. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.03
    0.027372966 = product of:
      0.10949186 = sum of:
        0.10949186 = weight(_text_:data in 4796) [ClassicSimilarity], result of:
          0.10949186 = score(doc=4796,freq=56.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.7394569 = fieldWeight in 4796, product of:
              7.483315 = tf(freq=56.0), with freq of:
                56.0 = termFreq=56.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.25 = coord(1/4)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  7. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.03
    0.026219916 = product of:
      0.05243983 = sum of:
        0.03657866 = weight(_text_:data in 4553) [ClassicSimilarity], result of:
          0.03657866 = score(doc=4553,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 4553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03172234 = score(doc=4553,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  8. Bizer, C.; Cyganiak, R.; Heath, T.: How to publish Linked Data on the Web (2007) 0.03
    0.025605064 = product of:
      0.102420256 = sum of:
        0.102420256 = weight(_text_:data in 3791) [ClassicSimilarity], result of:
          0.102420256 = score(doc=3791,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.69169855 = fieldWeight in 3791, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3791)
      0.25 = coord(1/4)
    
    Abstract
    This document provides a tutorial on how to publish Linked Data on the Web. After a general overview of the concept of Linked Data, we describe several practical recipes for publishing information as Linked Data on the Web.
    Content
    This tutorial has been superseeded by the book Linked Data: Evolving the Web into a Global Data Space written by Tom Heath and Christian Bizer. This tutorial was published in 2007 and is still online for historical reasons. The Linked Data book was published in 2011 and provides a more detailed and up-to-date introduction into Linked Data.
  9. Wright, H.: Semantic Web and ontologies (2018) 0.02
    0.023951344 = product of:
      0.09580538 = sum of:
        0.09580538 = weight(_text_:data in 80) [ClassicSimilarity], result of:
          0.09580538 = score(doc=80,freq=14.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.64702475 = fieldWeight in 80, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=80)
      0.25 = coord(1/4)
    
    Abstract
    The Semantic Web and ontologies can help archaeologists combine and share data, making it more open and useful. Archaeologists create diverse types of data, using a wide variety of technologies and methodologies. Like all research domains, these data are increasingly digital. The creation of data that are now openly and persistently available from disparate sources has also inspired efforts to bring archaeological resources together and make them more interoperable. This allows functionality such as federated cross-search across different datasets, and the mapping of heterogeneous data to authoritative structures to build a single data source. Ontologies provide the structure and relationships for Semantic Web data, and have been developed for use in cultural heritage applications generally, and archaeology specifically. A variety of online resources for archaeology now incorporate Semantic Web principles and technologies.
  10. Auer, S.; Lehmann, J.: Making the Web a data washing machine : creating knowledge out of interlinked data (2010) 0.02
    0.022399765 = product of:
      0.08959906 = sum of:
        0.08959906 = weight(_text_:data in 112) [ClassicSimilarity], result of:
          0.08959906 = score(doc=112,freq=24.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.60511017 = fieldWeight in 112, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=112)
      0.25 = coord(1/4)
    
    Abstract
    Over the past 3 years, the semantic web activity has gained momentum with the widespread publishing of structured data as RDF. The Linked Data paradigm has therefore evolved from a practical research idea into a very promising candidate for addressing one of the biggest challenges in the area of the Semantic Web vision: the exploitation of the Web as a platform for data and information integration. To translate this initial success into a world-scale reality, a number of research challenges need to be addressed: the performance gap between relational and RDF data management has to be closed, coherence and quality of data published on theWeb have to be improved, provenance and trust on the Linked Data Web must be established and generally the entrance barrier for data publishers and users has to be lowered. In this vision statement we discuss these challenges and argue, that research approaches tackling these challenges should be integrated into a mutual refinement cycle. We also present two crucial use-cases for the widespread adoption of linked data.
    Content
    Vgl.: http://www.semantic-web-journal.net/content/new-submission-making-web-data-washing-machine-creating-knowledge-out-interlinked-data http://www.semantic-web-journal.net/sites/default/files/swj24_0.pdf.
  11. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.02
    0.020448092 = product of:
      0.08179237 = sum of:
        0.08179237 = weight(_text_:data in 2208) [ClassicSimilarity], result of:
          0.08179237 = score(doc=2208,freq=20.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5523875 = fieldWeight in 2208, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
      0.25 = coord(1/4)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  12. Harlow, C.: Data munging tools in Preparation for RDF : Catmandu and LODRefine (2015) 0.02
    0.020448092 = product of:
      0.08179237 = sum of:
        0.08179237 = weight(_text_:data in 2277) [ClassicSimilarity], result of:
          0.08179237 = score(doc=2277,freq=20.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5523875 = fieldWeight in 2277, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2277)
      0.25 = coord(1/4)
    
    Abstract
    Data munging, or the work of remediating, enhancing and transforming library datasets for new or improved uses, has become more important and staff-inclusive in many library technology discussions and projects. Many times we know how we want our data to look, as well as how we want our data to act in discovery interfaces or when exposed, but we are uncertain how to make the data we have into the data we want. This article introduces and compares two library data munging tools that can help: LODRefine (OpenRefine with the DERI RDF Extension) and Catmandu. The strengths and best practices of each tool are discussed in the context of metadata munging use cases for an institution's metadata migration workflow. There is a focus on Linked Open Data modeling and transformation applications of each tool, in particular how metadataists, catalogers, and programmers can create metadata quality reports, enhance existing data with LOD sets, and transform that data to a RDF model. Integration of these tools with other systems and projects, the use of domain specific transformation languages, and the expansion of vocabulary reconciliation services are mentioned.
  13. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.02
    0.01900683 = product of:
      0.07602732 = sum of:
        0.07602732 = weight(_text_:data in 4798) [ClassicSimilarity], result of:
          0.07602732 = score(doc=4798,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.513453 = fieldWeight in 4798, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4798)
      0.25 = coord(1/4)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Content
    Beitrag des Workshops: Linked Data on the Web (LDOW2012), April 16, 2012 Lyon, France; vgl.: http://events.linkeddata.org/ldow2012/.
  14. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.02
    0.01828933 = product of:
      0.07315732 = sum of:
        0.07315732 = weight(_text_:data in 5309) [ClassicSimilarity], result of:
          0.07315732 = score(doc=5309,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.49407038 = fieldWeight in 5309, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5309)
      0.25 = coord(1/4)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
  15. Leskinen, P.; Hyvönen, E.: Extracting genealogical networks of linked data from biographical texts (2019) 0.02
    0.018105512 = product of:
      0.07242205 = sum of:
        0.07242205 = weight(_text_:data in 5798) [ClassicSimilarity], result of:
          0.07242205 = score(doc=5798,freq=8.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.48910472 = fieldWeight in 5798, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5798)
      0.25 = coord(1/4)
    
    Abstract
    This paper presents the idea and our work of extracting and reassembling a genealogical network automatically from a collection of biographies. The network can be used as a tool for network analysis of historical persons. The data has been published as Linked Data and as an interactive online service as part of the in-use data service and semantic portal BiographySampo - Finnish Biographies on the Semantic Web.
  16. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.02
    0.017156914 = product of:
      0.068627656 = sum of:
        0.068627656 = weight(_text_:data in 79) [ClassicSimilarity], result of:
          0.068627656 = score(doc=79,freq=22.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.46347913 = fieldWeight in 79, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
      0.25 = coord(1/4)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Series
    Lecture notes on data engineering and communications technologies book series; vol.32
    Source
    Data visualization and knowledge engineering. Eds. J. Hemanth, et al
  17. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.02
    0.015839024 = product of:
      0.063356094 = sum of:
        0.063356094 = weight(_text_:data in 438) [ClassicSimilarity], result of:
          0.063356094 = score(doc=438,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4278775 = fieldWeight in 438, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
  18. Hitzler, P.; Janowicz, K.: Ontologies in a data driven world : finding the middle ground (2013) 0.02
    0.015519011 = product of:
      0.062076043 = sum of:
        0.062076043 = weight(_text_:data in 803) [ClassicSimilarity], result of:
          0.062076043 = score(doc=803,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4192326 = fieldWeight in 803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=803)
      0.25 = coord(1/4)
    
  19. Hyvönen, E.; Leskinen, P.; Tamper, M.; Keravuori, K.; Rantala, H.; Ikkala, E.; Tuominen, J.: BiographySampo - publishing and enriching biographies on the Semantic Web for digital humanities research (2019) 0.01
    0.014458986 = product of:
      0.057835944 = sum of:
        0.057835944 = weight(_text_:data in 5799) [ClassicSimilarity], result of:
          0.057835944 = score(doc=5799,freq=10.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.39059696 = fieldWeight in 5799, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5799)
      0.25 = coord(1/4)
    
    Abstract
    This paper argues for making a paradigm shift in publishing and using biographical dictionaries on the web, based on Linked Data. The idea is to provide the user with enhanced reading experience of biographies by enriching contents with data linking and reasoning. In addition, versatile tooling for 1) biographical research of individual persons as well as for 2) prosopographical research on groups of people are provided. To demonstrate and evaluate the new possibilities,we present the semantic portal "BiographySampo - Finnish Biographies on theSemantic Web". The system is based on a knowledge graph extracted automatically from a collection of 13.100 textual biographies, enriched with data linking to 16 external data sources, and by harvesting external collection data from libraries, museums, and archives. The portal was released in September 2018 for free public use at: http://biografiasampo.fi.
  20. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.01
    0.0137169985 = product of:
      0.054867994 = sum of:
        0.054867994 = weight(_text_:data in 4232) [ClassicSimilarity], result of:
          0.054867994 = score(doc=4232,freq=36.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3705528 = fieldWeight in 4232, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.25 = coord(1/4)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.

Years

Types