Search (25 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Social tagging"
  • × year_i:[2000 TO 2010}
  1. Peters, I.: Folksonomies : indexing and retrieval in Web 2.0 (2009) 0.01
    0.014835967 = product of:
      0.0890158 = sum of:
        0.0890158 = sum of:
          0.040415287 = weight(_text_:web in 4203) [ClassicSimilarity], result of:
            0.040415287 = score(doc=4203,freq=12.0), product of:
              0.11439841 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03505379 = queryNorm
              0.35328537 = fieldWeight in 4203, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=4203)
          0.048600513 = weight(_text_:seite in 4203) [ClassicSimilarity], result of:
            0.048600513 = score(doc=4203,freq=2.0), product of:
              0.19633847 = queryWeight, product of:
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.03505379 = queryNorm
              0.24753433 = fieldWeight in 4203, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.03125 = fieldNorm(doc=4203)
      0.16666667 = coord(1/6)
    
    Abstract
    Kollaborative Informationsdienste im Web 2.0 werden von den Internetnutzern nicht nur dazu genutzt, digitale Informationsressourcen zu produzieren, sondern auch, um sie inhaltlich mit eigenen Schlagworten, sog. Tags, zu erschließen. Dabei müssen die Nutzer nicht wie bei Bibliothekskatalogen auf Regeln achten. Die Menge an nutzergenerierten Tags innerhalb eines Kollaborativen Informationsdienstes wird als Folksonomy bezeichnet. Die Folksonomies dienen den Nutzern zum Wiederauffinden eigener Ressourcen und für die Recherche nach fremden Ressourcen. Das Buch beschäftigt sich mit Kollaborativen Informationsdiensten, Folksonomies als Methode der Wissensrepräsentation und als Werkzeug des Information Retrievals.
    Footnote
    Zugl.: Düsseldorf, Univ., Diss., 2009 u.d.T.: Peters, Isabella: Folksonomies in Wissensrepräsentation und Information Retrieval Rez. in: IWP - Information Wissenschaft & Praxis, 61(2010) Heft 8, S.469-470 (U. Spree): "... Nachdem sich die Rezensentin durch 418 Seiten Text hindurch gelesen hat, bleibt sie unentschieden, wie der auffällige Einsatz langer Zitate (im Durchschnitt drei Zitate, die länger als vier kleingedruckte Zeilen sind, pro Seite) zu bewerten ist, zumal die Zitate nicht selten rein illustrativen Charakter haben bzw. Isabella Peters noch einmal zitiert, was sie bereits in eigenen Worten ausgedrückt hat. Redundanz und Verlängerung der Lesezeit halten sich hier die Waage mit der Möglichkeit, dass sich die Leserin einen unmittelbaren Eindruck von Sprache und Duktus der zitierten Literatur verschaffen kann. Eindeutig unschön ist das Beenden eines Gedankens oder einer Argumentation durch ein Zitat (z. B. S. 170). Im deutschen Original entstehen auf diese Weise die für deutsche wissenschaftliche Qualifikationsarbeiten typischen denglischen Texte. Für alle, die sich für Wissensrepräsentation, Information Retrieval und kollaborative Informationsdienste interessieren, ist "Folksonomies : Indexing and Retrieval in Web 2.0" trotz der angeführten kleinen Mängel zur Lektüre und Anschaffung - wegen seines beinahe enzyklopädischen Charakters auch als Nachschlage- oder Referenzwerk geeignet - unbedingt zu empfehlen. Abschließend möchte ich mich in einem Punkt der Produktinfo von de Gruyter uneingeschränkt anschließen: ein "Grundlagenwerk für Folksonomies".
    Object
    Web 2.0
    RSWK
    World Wide Web 2.0
    Subject
    World Wide Web 2.0
  2. Santini, M.: Zero, single, or multi? : genre of web pages through the users' perspective (2008) 0.01
    0.0135324355 = product of:
      0.040597305 = sum of:
        0.032609943 = product of:
          0.06521989 = sum of:
            0.06521989 = weight(_text_:web in 2059) [ClassicSimilarity], result of:
              0.06521989 = score(doc=2059,freq=20.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5701118 = fieldWeight in 2059, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2059)
          0.5 = coord(1/2)
        0.00798736 = product of:
          0.023962079 = sum of:
            0.023962079 = weight(_text_:29 in 2059) [ClassicSimilarity], result of:
              0.023962079 = score(doc=2059,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 2059, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2059)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    The goal of the study presented in this article is to investigate to what extent the classification of a web page by a single genre matches the users' perspective. The extent of agreement on a single genre label for a web page can help understand whether there is a need for a different classification scheme that overrides the single-genre labelling. My hypothesis is that a single genre label does not account for the users' perspective. In order to test this hypothesis, I submitted a restricted number of web pages (25 web pages) to a large number of web users (135 subjects) asking them to assign only a single genre label to each of the web pages. Users could choose from a list of 21 genre labels, or select one of the two 'escape' options, i.e. 'Add a label' and 'I don't know'. The rationale was to observe the level of agreement on a single genre label per web page, and draw some conclusions about the appropriateness of limiting the assignment to only a single label when doing genre classification of web pages. Results show that users largely disagree on the label to be assigned to a web page.
    Date
    30. 7.2008 10:29:54
  3. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.01
    0.00968514 = product of:
      0.02905542 = sum of:
        0.017861202 = product of:
          0.035722405 = sum of:
            0.035722405 = weight(_text_:web in 2652) [ClassicSimilarity], result of:
              0.035722405 = score(doc=2652,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3122631 = fieldWeight in 2652, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
        0.011194218 = product of:
          0.033582654 = sum of:
            0.033582654 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.033582654 = score(doc=2652,freq=4.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Danowski, P.: Authority files and Web 2.0 : Wikipedia and the PND. An Example (2007) 0.01
    0.009513283 = product of:
      0.028539848 = sum of:
        0.02062434 = product of:
          0.04124868 = sum of:
            0.04124868 = weight(_text_:web in 1291) [ClassicSimilarity], result of:
              0.04124868 = score(doc=1291,freq=8.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.36057037 = fieldWeight in 1291, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.023746524 = score(doc=1291,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 1291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    More and more users index everything on their own in the web 2.0. There are services for links, videos, pictures, books, encyclopaedic articles and scientific articles. All these services are library independent. But must that really be? Can't libraries help with their experience and tools to make user indexing better? On the experience of a project from German language Wikipedia together with the German person authority files (Personen Namen Datei - PND) located at German National Library (Deutsche Nationalbibliothek) I would like to show what is possible. How users can and will use the authority files, if we let them. We will take a look how the project worked and what we can learn for future projects. Conclusions - Authority files can have a role in the web 2.0 - there must be an open interface/ service for retrieval - everything that is indexed on the net with authority files can be easy integrated in a federated search - O'Reilly: You have to found ways that your data get more important that more it will be used
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
    Object
    Web 2.0
  5. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.01
    0.008999648 = product of:
      0.02699894 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 3387) [ClassicSimilarity], result of:
              0.035000663 = score(doc=3387,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 3387, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.028495826 = score(doc=3387,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  6. Corrado, E.; Moulaison, H.L.: Social tagging and communities of practice : two case studies (2008) 0.01
    0.0073198117 = product of:
      0.021959435 = sum of:
        0.012374603 = product of:
          0.024749206 = sum of:
            0.024749206 = weight(_text_:web in 2271) [ClassicSimilarity], result of:
              0.024749206 = score(doc=2271,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.21634221 = fieldWeight in 2271, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2271)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 2271) [ClassicSimilarity], result of:
              0.028754493 = score(doc=2271,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 2271, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2271)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Content
    In investigating the use of social tagging for knowledge organization and sharing, this paper reports on two case studies. Each study examines how two disparate communities of practices utilize social tagging to disseminate information to other community members in the online environment. Through the use of these tags, community members may retrieve and view relevant Web sites and online videos. The first study looks at tagging within the Code4Lib community of practice. The second study examines the use of tagging on video sharing sites used by a community of French teenagers. Uses of social tagging to share information within these communities are analyzed and discussed, and recommendations for future study are provided.
    Date
    27.12.2008 11:20:29
  7. Rolla, P.J.: User tags versus Subject headings : can user-supplied data improve subject access to library collections? (2009) 0.01
    0.007291071 = product of:
      0.021873213 = sum of:
        0.012374603 = product of:
          0.024749206 = sum of:
            0.024749206 = weight(_text_:web in 3601) [ClassicSimilarity], result of:
              0.024749206 = score(doc=3601,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.21634221 = fieldWeight in 3601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3601)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 3601) [ClassicSimilarity], result of:
              0.028495826 = score(doc=3601,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 3601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3601)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Some members of the library community, including the Library of Congress Working Group on the Future of Bibliographic Control, have suggested that libraries should open up their catalogs to allow users to add descriptive tags to the bibliographic data in catalog records. The web site LibraryThing currently permits its members to add such user tags to its records for books and therefore provides a useful resource to contrast with library bibliographic records. A comparison between the LibraryThing tags for a group of books and the library-supplied subject headings for the same books shows that users and catalogers approach these descriptors very differently. Because of these differences, user tags can enhance subject access to library materials, but they cannot entirely replace controlled vocabularies such as the Library of Congress subject headings.
    Date
    10. 9.2000 17:38:22
  8. Heckner, M.: Tagging, rating, posting : studying forms of user contribution for web-based information management and information retrieval (2009) 0.01
    0.005434991 = product of:
      0.032609943 = sum of:
        0.032609943 = product of:
          0.06521989 = sum of:
            0.06521989 = weight(_text_:web in 2931) [ClassicSimilarity], result of:
              0.06521989 = score(doc=2931,freq=20.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5701118 = fieldWeight in 2931, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2931)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Content
    The Web of User Contribution - Foundations and Principles of the Social Web - Social Tagging - Rating and Filtering of Digital Resources Empirical Analysisof User Contributions - The Functional and Linguistic Structure of Tags - A Comparative Analysis of Tags for Different Digital Resource Types - Exploring Relevance Assessments in Social IR Systems - Exploring User Contribution Within a Higher Education Scenario - Summary of Empirical Results and Implications for Designing Social Information Systems User Contribution for a Participative Information System - Social Information Architecture for an Online Help System
    Object
    Web 2.0
    RSWK
    World Wide Web 2.0 / Benutzer / Online-Publizieren / Information Retrieval / Soziale Software / Hilfesystem
    Social Tagging / Filter / Web log / World Wide Web 2.0
    Subject
    World Wide Web 2.0 / Benutzer / Online-Publizieren / Information Retrieval / Soziale Software / Hilfesystem
    Social Tagging / Filter / Web log / World Wide Web 2.0
  9. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.01
    0.005300956 = product of:
      0.031805735 = sum of:
        0.031805735 = product of:
          0.0477086 = sum of:
            0.023962079 = weight(_text_:29 in 2648) [ClassicSimilarity], result of:
              0.023962079 = score(doc=2648,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
            0.023746524 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.023746524 = score(doc=2648,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.6666667 = coord(2/3)
      0.16666667 = coord(1/6)
    
    Date
    20. 2.2009 10:29:07
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. Bentley, C.M.; Labelle, P.R.: ¬A comparison of social tagging designs and user participation (2008) 0.00
    0.004860714 = product of:
      0.014582142 = sum of:
        0.008249735 = product of:
          0.01649947 = sum of:
            0.01649947 = weight(_text_:web in 2657) [ClassicSimilarity], result of:
              0.01649947 = score(doc=2657,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.14422815 = fieldWeight in 2657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2657)
          0.5 = coord(1/2)
        0.0063324063 = product of:
          0.018997218 = sum of:
            0.018997218 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
              0.018997218 = score(doc=2657,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.15476047 = fieldWeight in 2657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2657)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Social tagging empowers users to categorize content in a personally meaningful way while harnessing their potential to contribute to a collaborative construction of knowledge (Vander Wal, 2007). In addition, social tagging systems offer innovative filtering mechanisms that facilitate resource discovery and browsing (Mathes, 2004). As a result, social tags may support online communication, informal or intended learning as well as the development of online communities. The purpose of this mixed methods study is to examine how undergraduate students participate in social tagging activities in order to learn about their motivations, behaviours and practices. A better understanding of their knowledge, habits and interactions with such systems will help practitioners and developers identify important factors when designing enhancements. In the first phase of the study, students enrolled at a Canadian university completed 103 questionnaires. Quantitative results focusing on general familiarity with social tagging, frequently used Web 2.0 sites, and the purpose for engaging in social tagging activities were compiled. Eight questionnaire respondents participated in follow-up semi-structured interviews that further explored tagging practices by situating questionnaire responses within concrete experiences using popular websites such as YouTube, Facebook, Del.icio.us, and Flickr. Preliminary results of this study echo findings found in the growing literature concerning social tagging from the fields of computer science (Sen et al., 2006) and information science (Golder & Huberman, 2006; Macgregor & McCulloch, 2006). Generally, two classes of social taggers emerge: those who focus on tagging for individual purposes, and those who view tagging as a way to share or communicate meaning to others. Heavy del.icio.us users, for example, were often focused on simply organizing their own content, and seemed to be conscientiously maintaining their own personally relevant categorizations while, in many cases, placing little importance on the tags of others. Conversely, users tagging items primarily to share content preferred to use specific terms to optimize retrieval and discovery by others. Our findings should inform practitioners of how interaction design can be tailored for different tagging systems applications, and how these findings are positioned within the current debate surrounding social tagging among the resource discovery community. We also hope to direct future research in the field to place a greater importance on exploring the benefits of tagging as a socially-driven endeavour rather than uniquely as a means of managing information.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  11. DeZelar-Tiedman, V.: Doing the LibraryThing(TM) in an academic library catalog (2008) 0.00
    0.004860714 = product of:
      0.014582142 = sum of:
        0.008249735 = product of:
          0.01649947 = sum of:
            0.01649947 = weight(_text_:web in 2666) [ClassicSimilarity], result of:
              0.01649947 = score(doc=2666,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.14422815 = fieldWeight in 2666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2666)
          0.5 = coord(1/2)
        0.0063324063 = product of:
          0.018997218 = sum of:
            0.018997218 = weight(_text_:22 in 2666) [ClassicSimilarity], result of:
              0.018997218 = score(doc=2666,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.15476047 = fieldWeight in 2666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2666)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Many libraries and other cultural institutions are incorporating Web 2.0 features and enhanced metadata into their catalogs (Trant 2006). These value-added elements include those typically found in commercial and social networking sites, such as book jacket images, reviews, and usergenerated tags. One such site that libraries are exploring as a model is LibraryThing (www.librarything.com) LibraryThing is a social networking site that allows users to "catalog" their own book collections. Members can add tags and reviews to records for books, as well as engage in online discussions. In addition to its service for individuals, LibraryThing offers a feebased service to libraries, where institutions can add LibraryThing tags, recommendations, and other features to their online catalog records. This poster will present data analyzing the quality and quantity of the metadata that a large academic library would expect to gain if utilizing such a service, focusing on the overlap between titles found in the library's catalog and in LibraryThing's database, and on a comparison between the controlled subject headings in the former and the user-generated tags in the latter. During February through April 2008, a random sample of 383 titles from the University of Minnesota Libraries catalog was searched in LibraryThing. Eighty works, or 21 percent of the sample, had corresponding records available in LibraryThing. Golder and Huberman (2006) outline the advantages and disadvantages of using controlled vocabulary for subject access to information resources versus the growing trend of tags supplied by users or by content creators. Using the 80 matched records from the sample, comparisons were made between the user-supplied tags in LibraryThing (social tags) and the subject headings in the library catalog records (controlled vocabulary system). In the library records, terms from all 6XX MARC fields were used. To make a more meaningful comparison, controlled subject terms were broken down into facets according to their headings and subheadings, and each unique facet counted separately. A total of 227 subject terms were applied to the 80 catalog records, an average of 2.84 per record. In LibraryThing, 698 tags were applied to the same 80 titles, an average of 8.73 per title. The poster will further explore the relationships between the terms applied in each source, and identify where overlaps and complementary levels of access occur.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Vander Wal, T.: Welcome to the Matrix! (2008) 0.00
    0.004860714 = product of:
      0.014582142 = sum of:
        0.008249735 = product of:
          0.01649947 = sum of:
            0.01649947 = weight(_text_:web in 2881) [ClassicSimilarity], result of:
              0.01649947 = score(doc=2881,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.14422815 = fieldWeight in 2881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2881)
          0.5 = coord(1/2)
        0.0063324063 = product of:
          0.018997218 = sum of:
            0.018997218 = weight(_text_:22 in 2881) [ClassicSimilarity], result of:
              0.018997218 = score(doc=2881,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.15476047 = fieldWeight in 2881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2881)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    My keynote at the workshop "Social Tagging in Knowledge Organization" was a great opportunity to make and share new experiences. For the first time ever, I sat in my office at home and gave a live web video presentation to a conference audience elsewhere on the globe. At the same time, it was also an opportunity to premier my conceptual model "Matrix of Perception" to an interdisciplinary audience of researchers and practitioners with a variety of backgrounds - reaching from philosophy, psychology, pedagogy and computation to library science and economics. The interdisciplinary approach of the conference is also mirrored in the structure of this volume, with articles on the theoretical background, the empirical analysis and the potential applications of tagging, for instance in university libraries, e-learning, or e-commerce. As an introduction to the topic of "social tagging" I would like to draw your attention to some foundation concepts of the phenomenon I have racked my brain with for the last few month. One thing I have seen missing in recent research and system development is a focus on the variety of user perspectives in social tagging. Different people perceive tagging in complex variegated ways and use this form of knowledge organization for a variety of purposes. My analytical interest lies in understanding the personas and patterns in tagging systems and in being able to label their different perceptions. To come up with a concise picture of user expectations, needs and activities, I have broken down the perspectives on tagging into two different categories, namely "faces" and "depth". When put together, they form the "Matrix of Perception" - a nuanced view of stakeholders and their respective levels of participation.
    Date
    22. 6.2009 9:15:45
  13. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.00
    0.0041248677 = product of:
      0.024749206 = sum of:
        0.024749206 = product of:
          0.049498413 = sum of:
            0.049498413 = weight(_text_:web in 3290) [ClassicSimilarity], result of:
              0.049498413 = score(doc=3290,freq=8.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.43268442 = fieldWeight in 3290, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3290)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  14. Hammond, T.; Hannay, T.; Lund, B.; Scott, J.: Social bookmarking tools (I) : a general review (2005) 0.00
    0.0034028427 = product of:
      0.020417055 = sum of:
        0.020417055 = product of:
          0.04083411 = sum of:
            0.04083411 = weight(_text_:web in 1188) [ClassicSimilarity], result of:
              0.04083411 = score(doc=1188,freq=16.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.35694647 = fieldWeight in 1188, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Because, to paraphrase a pop music lyric from a certain rock and roll band of yesterday, "the Web is old, the Web is new, the Web is all, the Web is you", it seems like we might have to face up to some of these stark realities. With the introduction of new social software applications such as blogs, wikis, newsfeeds, social networks, and bookmarking tools (the subject of this paper), the claim that Shelley Powers makes in a Burningbird blog entry seems apposite: "This is the user's web now, which means it's my web and I can make the rules." Reinvention is revolution - it brings us always back to beginnings. We are here going to remind you of hyperlinks in all their glory, sell you on the idea of bookmarking hyperlinks, point you at other folks who are doing the same, and tell you why this is a good thing. Just as long as those hyperlinks (or let's call them plain old links) are managed, tagged, commented upon, and published onto the Web, they represent a user's own personal library placed on public record, which - when aggregated with other personal libraries - allows for rich, social networking opportunities. Why spill any ink (digital or not) in rewriting what someone else has already written about instead of just pointing at the original story and adding the merest of titles, descriptions and tags for future reference? More importantly, why not make these personal 'link playlists' available to oneself and to others from whatever browser or computer one happens to be using at the time? This paper reviews some current initiatives, as of early 2005, in providing public link management applications on the Web - utilities that are often referred to under the general moniker of 'social bookmarking tools'. There are a couple of things going on here: 1) server-side software aimed specifically at managing links with, crucially, a strong, social networking flavour, and 2) an unabashedly open and unstructured approach to tagging, or user classification, of those links.
  15. Farkas, M.G.: Social software in libraries : building collaboration, communication, and community online (2007) 0.00
    0.002916722 = product of:
      0.017500332 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 2364) [ClassicSimilarity], result of:
              0.035000663 = score(doc=2364,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 2364, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2364)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    RSWK
    Bibliothek / Web log
    Subject
    Bibliothek / Web log
  16. Shirky, C.: Ontology is overrated : categories, links, and tags (2005) 0.00
    0.0024306017 = product of:
      0.01458361 = sum of:
        0.01458361 = product of:
          0.02916722 = sum of:
            0.02916722 = weight(_text_:web in 1265) [ClassicSimilarity], result of:
              0.02916722 = score(doc=1265,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25496176 = fieldWeight in 1265, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1265)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Today I want to talk about categorization, and I want to convince you that a lot of what we think we know about categorization is wrong. In particular, I want to convince you that many of the ways we're attempting to apply categorization to the electronic world are actually a bad fit, because we've adopted habits of mind that are left over from earlier strategies. I also want to convince you that what we're seeing when we see the Web is actually a radical break with previous categorization strategies, rather than an extension of them. The second part of the talk is more speculative, because it is often the case that old systems get broken before people know what's going to take their place. (Anyone watching the music industry can see this at work today.) That's what I think is happening with categorization. What I think is coming instead are much more organic ways of organizing information than our current categorization schemes allow, based on two units -- the link, which can point to anything, and the tag, which is a way of attaching labels to links. The strategy of tagging -- free-form labeling, without regard to categorical constraints -- seems like a recipe for disaster, but as the Web has shown us, you can extract a surprising amount of value from big messy data sets.
  17. Hänger, C.: Knowledge management in the digital age : the possibilities of user generated content (2009) 0.00
    0.0024306017 = product of:
      0.01458361 = sum of:
        0.01458361 = product of:
          0.02916722 = sum of:
            0.02916722 = weight(_text_:web in 2813) [ClassicSimilarity], result of:
              0.02916722 = score(doc=2813,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25496176 = fieldWeight in 2813, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2813)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Today, in times of Web 2.0., graduates and undergraduates interact in virtual communities like studiVZ (Studentenverzeichnis) and generate content by reviewing or tagging documents. This phenomenon offers good prospects for academic libraries. They can use the customers' tags for indexing the growing amount of electronic resources and thereby optimize the search for these documents. Important examples are the journals, databases and e-books included in the "Nationallizenzen" financed by the German Research Foundation (DFG). The documents in this collection are not manually indexed by librarians and have no annotation according to the German standard classification systems. Connecting search systems by means of Web-2.0.-services is an important task for libraries. For this purpose users are encouraged to tag printed and electronic resources in search systems like the libraries' online catalogs and to establish connections between entries in other systems, e.g. Bibsonomy, and the items found in the online catalog. As a consequence annotations chosen by both, users and librarians, will coexist: The items in the tagging systems and the online catalog are linked, library users may find other publications of interest, and contacts between library users with similar scientific interests may be established. Librarians have to face the fact that user generated tags do not necessarily have the same quality as their own annotations and will therefore have to seek for instruments for comparing user generated tags with library generated keywords.
  18. Abreu, A.: "Every bit informs another" : framework analysis for descriptive practice and linked information (2008) 0.00
    0.002406173 = product of:
      0.0144370375 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 2249) [ClassicSimilarity], result of:
              0.028874075 = score(doc=2249,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 2249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2249)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Content
    The independent traditions of description in bibliographic and archival environments are rich and continually evolving. Recognizing this, how can Libraries, Archives and Museums seek convergence in describing materials on the web? In order to seek better description for materials and cross-institutional alignment, we can first reconceptualize where description may fit into work practices. I examine subject cataloging and archival practice alongside social tagging as a means of drawing conclusions for possible new paths in integration.
  19. Trant, J.; Bearman, D.: Social terminology enhancement through vernacular engagement : exploring collaborative annotation to encourage interaction with museum collections (2005) 0.00
    0.0019444814 = product of:
      0.011666888 = sum of:
        0.011666888 = product of:
          0.023333777 = sum of:
            0.023333777 = weight(_text_:web in 1185) [ClassicSimilarity], result of:
              0.023333777 = score(doc=1185,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.2039694 = fieldWeight in 1185, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1185)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    From their earliest encounters with the Web, museums have seen an opportunity to move beyond uni-directional communication into an environment that engages their users and reflects a multiplicity of perspectives. Shedding the "Unassailable Voice" (Walsh 1997) in favor of many "Points of View" (Sledge 1995) has challenged traditional museum approaches to the creation and delivery of content. Novel approaches are required in order to develop and sustain user engagement (Durbin 2004). New models of exhibit creation that democratize the curatorial functions of object selection and interpretation offer one way of opening up the museum (Coldicutt and Streten 2005). Another is to use the museum as a forum and focus for community story-telling (Howard, Pratty et al. 2005). Unfortunately, museum collections remain relatively inaccessible even when 'made available' through searchable on-line databases. Museum documentation seldom satisfies the on-line access needs of the broad public, both because it is written using professional terminology and because it may not address what is important to - or remembered by - the museum visitor. For example, an exhibition now on-line at The Metropolitan Museum of Art acknowledges "Coco" Chanel only in the brief, textual introduction (The Metropolitan Museum of Art 2005a). All of the images of her delightful fashion designs are attributed to "Gabrielle Chanel" (The Metropolitan Museum of Art 2005a). Interfaces that organize collections along axes of time or place - such of that of the Timeline of Art History (The Metropolitan Museum of Art 2005e) - often fail to match users' world-views, despite the care that went into their structuring or their significant pedagogical utility. Critically, as professionals working with art museums we realize that when cataloguers and curators describe works of art, they usually do not include the "subject" of the image itself. Simply put, we rarely answer the question "What is it a picture of?" Unfortunately, visitors will often remember a work based on its visual characteristics, only to find that Web-based searches for any of the things they recall do not produce results.
  20. Hammond, T.; Hannay, T.; Lund, B.; Flack, M.: Social bookmarking tools (II) : a case study - Connotea (2005) 0.00
    0.001718695 = product of:
      0.01031217 = sum of:
        0.01031217 = product of:
          0.02062434 = sum of:
            0.02062434 = weight(_text_:web in 1189) [ClassicSimilarity], result of:
              0.02062434 = score(doc=1189,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.18028519 = fieldWeight in 1189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Connotea is a free online reference management and social bookmarking service for scientists created by Nature Publishing Group. While somewhat experimental in nature, Connotea already has a large and growing number of users, and is a real, fully functioning service. The label 'experimental' is not meant to imply that the service is any way ephemeral or esoteric, rather that the concept of social bookmarking itself and the application of that concept to reference management are both recent developments. Connotea is under active development, and we are still in the process of discovering how people will use it. In addition to Connotea being a free and public service, the core code is freely available under an open source license. Connotea was conceived from the outset as an online, social tool. Seeing the possibilities that del.icio.us was opening up for its users in the area of general web linking, we realised that scholarly reference management was a similar problem space. Connotea was designed and developed late in 2004, and soft-launched at the end of December 2004. Usage has grown over the past several months, to the point where there is now enough data in the system for interesting second-order effects to emerge. This paper will start by giving an overview of Connotea, and will outline the key concepts and describe its main features. We will then take the reader on a brief guided tour, show some of the aforementioned second-order effects, and end with a discussion of Connotea's likely future direction.

Types