Search (422 results, page 3 of 22)

  • × language_ss:"e"
  • × theme_ss:"Suchmaschinen"
  1. Duval, B.K.; Main, L.: Searching the Internet : part 2 trail-blazers (1997) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 858) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=858,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 858, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=858)
          0.023556758 = weight(_text_:22 in 858) [ClassicSimilarity], result of:
            0.023556758 = score(doc=858,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 858, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=858)
      0.06666667 = coord(1/15)
    
    Abstract
    Presents a guide to searching for information on the Internet covering Research-It; familiar quotations: a collection of passages, phrases and proverbs traced to their sources in ancient and modern literature by John Bartlett; the Internet Public Library Reference Center; SearchERIC Database; Britannica Online; Britannica's Lives; The complete works of William Shakespeare; Flicks/Movie Schedules and Reviews; the Electronic Newsstand; CNN Interactive; Time Warner's Pathfinder; Electronic Newspapers from all 50 States; Yahoo, News; Newspapers; Techweb; ZDNet; the On-line Books Page; Columbia University Bartleby Library; the Children's Literature Web Guide; National Institutes of Health; US Census Bureau; Earthquake Info; US Postal Service Zip+4 Lookup; the Federal Web Locator; World Wide Web Virtual Library; US Government Information Sources; Index of the Constitution of the US; US States Code; Find California Code; Dearch for Bills; California Tenant's Rights; The Online Career Center; QuickAID Home Page; City.Net; Netscape's Destinations Button; International Telephone Directory; World Alumni Net; Archives of Adoptees and Birth Parents; and World Wide Registry Matching Adoptees with Birth Parents
    Date
    6. 3.1997 16:22:15
  2. Carrière, S.J.; Kazman, R.: Webquery : searching and visualising the Web through connectivity (1997) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 2674) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=2674,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 2674, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2674)
          0.023556758 = weight(_text_:22 in 2674) [ClassicSimilarity], result of:
            0.023556758 = score(doc=2674,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 2674, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2674)
      0.06666667 = coord(1/15)
    
    Abstract
    The WebQuery system offers a powerful new method for searching the Web based on connectivity and content. Examines links among the nodes returned in a keyword-based query. Rankes the nodes, giving the highest rank to the most highly connected nodes. By doing so, finds hot spots on the Web that contain information germane to a user's query. WebQuery not only ranks and filters the results of a Web query; it also extends the result set beyond what the search engine retrieves, by finding interesting sites that are highly connected to those sites returned by the original query. Even with WebQuery filering and ranking query results, the result set can be enormous. Explores techniques for visualizing the returned information and discusses the criteria for using each of the technique
    Date
    1. 8.1996 22:08:06
  3. Mukherjea, S.; Hirata, K.; Hara, Y.: Towards a multimedia World-Wide Web information retrieval engine (1997) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 2678) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=2678,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 2678, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2678)
          0.023556758 = weight(_text_:22 in 2678) [ClassicSimilarity], result of:
            0.023556758 = score(doc=2678,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 2678, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2678)
      0.06666667 = coord(1/15)
    
    Abstract
    Describes a search engine that integrate text and image search. 1 or more Web site can be indexed for both textual and image information, allowing the user to search based on keywords or images or both. Another problem with the current search engines is that they show the results as pages of scrolled lists; this is not very user-friendly. The search engine allows the user to visualise to results in various ways. Explains the indexing and searching techniques of the search engine and highlights several features of the querying interface to make the retrieval process more efficient. Use examples to show the usefulness of the technology
    Date
    1. 8.1996 22:08:06
  4. Ardo, A.; Lundberg, S.: ¬A regional distributed WWW search and indexing service : the DESIRE way (1998) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 4190) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=4190,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 4190, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=4190)
          0.023556758 = weight(_text_:22 in 4190) [ClassicSimilarity], result of:
            0.023556758 = score(doc=4190,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 4190, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4190)
      0.06666667 = coord(1/15)
    
    Abstract
    Creates an open, metadata aware system for distributed, collaborative WWW indexing. The system has 3 main components: a harvester (for collecting information), a database (for making the collection searchable), and a user interface (for making the information available). all components can be distributed across networked computers, thus supporting scalability. The system is metadata aware and thus allows searches on several fields including title, document author and URL. Nordic Web Index (NWI) is an application using this system to create a regional Nordic Web-indexing service. NWI is built using 5 collaborating service points within the Nordic countries. The NWI databases can be used to build additional services
    Date
    1. 8.1996 22:08:06
  5. Fischer, T.; Neuroth, H.: SSG-FI - special subject gateways to high quality Internet resources for scientific users (2000) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 4873) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=4873,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 4873, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=4873)
          0.023556758 = weight(_text_:22 in 4873) [ClassicSimilarity], result of:
            0.023556758 = score(doc=4873,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 4873, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4873)
      0.06666667 = coord(1/15)
    
    Date
    22. 6.2002 19:40:42
    Source
    Online information review. 24(2000) no.1, S.64-68
    Theme
    Information Gateway
  6. Large, A.; Beheshti, J.; Rahman, T.: Design criteria for children's Web portals : the users speak out (2002) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 197) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=197,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 197, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=197)
          0.023556758 = weight(_text_:22 in 197) [ClassicSimilarity], result of:
            0.023556758 = score(doc=197,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 197, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=197)
      0.06666667 = coord(1/15)
    
    Abstract
    Four focus groups were held with young Web users (10 to 13 years of age) to explore design criteria for Web portals. The focus group participants commented upon four existing portals designed with young users in mind: Ask Jeeves for Kids, KidsClick, Lycos Zone, and Yahooligans! This article reports their first impressions on using these portals, their likes and dislikes, and their suggestions for improvements. Design criteria for children's Web portals are elaborated based upon these comments under four headings: portal goals, visual design, information architecture, and personalization. An ideal portal should cater for both educational and entertainment needs, use attractive screen designs based especially on effective use of color, graphics, and animation, provide both keyword search facilities and browsable subject categories, and allow individual user personalization in areas such as color and graphics
    Date
    2. 6.2005 10:34:22
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.2, S.79-94
  7. Bilal, D.: Children's use of the Yahooligans! Web search engine : III. Cognitive and physical behaviors on fully self-generated search tasks (2002) 0.00
    0.0021285866 = product of:
      0.031928796 = sum of:
        0.031928796 = sum of:
          0.0083720395 = weight(_text_:information in 5228) [ClassicSimilarity], result of:
            0.0083720395 = score(doc=5228,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16457605 = fieldWeight in 5228, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=5228)
          0.023556758 = weight(_text_:22 in 5228) [ClassicSimilarity], result of:
            0.023556758 = score(doc=5228,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 5228, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5228)
      0.06666667 = coord(1/15)
    
    Abstract
    Bilal, in this third part of her Yahooligans! study looks at children's performance with self-generated search tasks, as compared to previously assigned search tasks looking for differences in success, cognitive behavior, physical behavior, and task preference. Lotus ScreenCam was used to record interactions and post search interviews to record impressions. The subjects, the same 22 seventh grade children in the previous studies, generated topics of interest that were mediated with the researcher into more specific topics where necessary. Fifteen usable sessions form the basis of the study. Eleven children were successful in finding information, a rate of 73% compared to 69% in assigned research questions, and 50% in assigned fact-finding questions. Eighty-seven percent began using one or two keyword searches. Spelling was a problem. Successful children made fewer keyword searches and the number of search moves averaged 5.5 as compared to 2.4 on the research oriented task and 3.49 on the factual. Backtracking and looping were common. The self-generated task was preferred by 47% of the subjects.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.13, S.1170-1183
  8. Chaudiron, S.; Ihadjadene, M.: Studying Web search engines from a user perspective : key concepts and main approaches (2012) 0.00
    0.002114309 = product of:
      0.031714633 = sum of:
        0.031714633 = sum of:
          0.012083998 = weight(_text_:information in 109) [ClassicSimilarity], result of:
            0.012083998 = score(doc=109,freq=12.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.23754507 = fieldWeight in 109, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
          0.019630633 = weight(_text_:22 in 109) [ClassicSimilarity], result of:
            0.019630633 = score(doc=109,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
      0.06666667 = coord(1/15)
    
    Abstract
    This chapter shows that the wider use of Web search engines, reconsidering the theoretical and methodological frameworks to grasp new information practices. Beginning with an overview of the recent challenges implied by the dynamic nature of the Web, this chapter then traces the information behavior related concepts in order to present the different approaches from the user perspective. The authors pay special attention to the concept of "information practice" and other related concepts such as "use", "activity", and "behavior" largely used in the literature but not always strictly defined. The authors provide an overview of user-oriented studies that are meaningful to understand the different contexts of use of electronic information access systems, focusing on five approaches: the system-oriented approaches, the theories of information seeking, the cognitive and psychological approaches, the management science approaches, and the marketing approaches. Future directions of work are then shaped, including social searching and the ethical, cultural, and political dimensions of Web search engines. The authors conclude considering the importance of Critical theory to better understand the role of Web Search engines in our modern society.
    Date
    20. 4.2012 13:22:37
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  9. Loia, V.; Pedrycz, W.; Senatore, S.; Sessa, M.I.: Web navigation support by means of proximity-driven assistant agents (2006) 0.00
    0.0020441178 = product of:
      0.030661764 = sum of:
        0.030661764 = sum of:
          0.01103113 = weight(_text_:information in 5283) [ClassicSimilarity], result of:
            0.01103113 = score(doc=5283,freq=10.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.21684799 = fieldWeight in 5283, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5283)
          0.019630633 = weight(_text_:22 in 5283) [ClassicSimilarity], result of:
            0.019630633 = score(doc=5283,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 5283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5283)
      0.06666667 = coord(1/15)
    
    Abstract
    The explosive growth of the Web and the consequent exigency of the Web personalization domain have gained a key position in the direction of customization of the Web information to the needs of specific users, taking advantage of the knowledge acquired from the analysis of the user's navigational behavior (usage data) in correlation with other information collected in the Web context, namely, structure, content, and user profile data. This work presents an agent-based framework designed to help a user in achieving personalized navigation, by recommending related documents according to the user's responses in similar-pages searching mode. Our agent-based approach is grounded in the integration of different techniques and methodologies into a unique platform featuring user profiling, fuzzy multisets, proximity-oriented fuzzy clustering, and knowledge-based discovery technologies. Each of these methodologies serves to solve one facet of the general problem (discovering documents relevant to the user by searching the Web) and is treated by specialized agents that ultimately achieve the final functionality through cooperation and task distribution.
    Date
    22. 7.2006 16:59:13
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.515-527
  10. Sherman, C.; Price, G.: ¬The invisible Web : uncovering information sources search engines can't see (2001) 0.00
    0.0020351496 = product of:
      0.015263621 = sum of:
        0.007863713 = weight(_text_:und in 62) [ClassicSimilarity], result of:
          0.007863713 = score(doc=62,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.12243814 = fieldWeight in 62, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=62)
        0.007399907 = product of:
          0.014799814 = sum of:
            0.014799814 = weight(_text_:information in 62) [ClassicSimilarity], result of:
              0.014799814 = score(doc=62,freq=18.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2909321 = fieldWeight in 62, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=62)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Enormous expanses of the Internet are unreachable with standard Web search engines. This book provides the key to finding these hidden resources by identifying how to uncover and use invisible Web resources. Mapping the invisible Web, when and how to use it, assessing the validity of the information, and the future of Web searching are topics covered in detail. Only 16 percent of Net-based information can be located using a general search engine. The other 84 percent is what is referred to as the invisible Web-made up of information stored in databases. Unlike pages on the visible Web, information in databases is generally inaccessible to the software spiders and crawlers that compile search engine indexes. As Web technology improves, more and more information is being stored in databases that feed into dynamically generated Web pages. The tips provided in this resource will ensure that those databases are exposed and Net-based research will be conducted in the most thorough and effective manner. Discusses the use of online information resources and problems caused by dynamically generated Web pages, paying special attention to information mapping, assessing the validity of information, and the future of Web searching.
    Content
    Enthält viele Hinweise und Links für Suchen im 'invisible net'
  11. Herrera-Viedma, E.; Pasi, G.: Soft approaches to information retrieval and information access on the Web : an introduction to the special topic section (2006) 0.00
    0.001995616 = product of:
      0.029934237 = sum of:
        0.029934237 = sum of:
          0.01422973 = weight(_text_:information in 5285) [ClassicSimilarity], result of:
            0.01422973 = score(doc=5285,freq=26.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.2797255 = fieldWeight in 5285, product of:
                5.0990195 = tf(freq=26.0), with freq of:
                  26.0 = termFreq=26.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.03125 = fieldNorm(doc=5285)
          0.015704507 = weight(_text_:22 in 5285) [ClassicSimilarity], result of:
            0.015704507 = score(doc=5285,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.15476047 = fieldWeight in 5285, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5285)
      0.06666667 = coord(1/15)
    
    Abstract
    The World Wide Web is a popular and interactive medium used to collect, disseminate, and access an increasingly huge amount of information, which constitutes the mainstay of the so-called information and knowledge society. Because of its spectacular growth, related to both Web resources (pages, sites, and services) and number of users, the Web is nowadays the main information repository and provides some automatic systems for locating, accessing, and retrieving information. However, an open and crucial question remains: how to provide fast and effective retrieval of the information relevant to specific users' needs. This is a very hard and complex task, since it is pervaded with subjectivity, vagueness, and uncertainty. The expression soft computing refers to techniques and methodologies that work synergistically with the aim of providing flexible information processing tolerant of imprecision, vagueness, partial truth, and approximation. So, soft computing represents a good candidate to design effective systems for information access and retrieval on the Web. One of the most representative tools of soft computing is fuzzy set theory. This special topic section collects research articles witnessing some recent advances in improving the processes of information access and retrieval on the Web by using soft computing tools, and in particular, by using fuzzy sets and/or integrating them with other soft computing tools. In this introductory article, we first review the problem of Web retrieval and the concept of soft computing technology. We then briefly introduce the articles in this section and conclude by highlighting some future research directions that could benefit from the use of soft computing technologies.
    Date
    22. 7.2006 16:59:33
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.511-514
  12. Garcés, P.J.; Olivas, J.A.; Romero, F.P.: Concept-matching IR systems versus word-matching information retrieval systems : considering fuzzy interrelations for indexing Web pages (2006) 0.00
    0.0019664785 = product of:
      0.029497176 = sum of:
        0.029497176 = sum of:
          0.009866543 = weight(_text_:information in 5288) [ClassicSimilarity], result of:
            0.009866543 = score(doc=5288,freq=8.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.19395474 = fieldWeight in 5288, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
          0.019630633 = weight(_text_:22 in 5288) [ClassicSimilarity], result of:
            0.019630633 = score(doc=5288,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 5288, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
      0.06666667 = coord(1/15)
    
    Date
    22. 7.2006 17:14:12
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.564-576
  13. Golderman, G.M.; Connolly, B.: Between the book covers : going beyond OPAC keyword searching with the deep linking capabilities of Google Scholar and Google Book Search (2004/05) 0.00
    0.0019664785 = product of:
      0.029497176 = sum of:
        0.029497176 = sum of:
          0.009866543 = weight(_text_:information in 731) [ClassicSimilarity], result of:
            0.009866543 = score(doc=731,freq=8.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.19395474 = fieldWeight in 731, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=731)
          0.019630633 = weight(_text_:22 in 731) [ClassicSimilarity], result of:
            0.019630633 = score(doc=731,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 731, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=731)
      0.06666667 = coord(1/15)
    
    Abstract
    One finding of the 2006 OCLC study of College Students' Perceptions of Libraries and Information Resources was that students expressed equal levels of trust in libraries and search engines when it came to meeting their information needs in a way that they felt was authoritative. Seeking to incorporate this insight into our own instructional methodology, Schaffer Library at Union College has attempted to engineer a shift from Google to Google Scholar among our student users by representing Scholar as a viable adjunct to the catalog and to snore traditional electronic resources. By attempting to engage student researchers on their own terms, we have discovered that most of them react enthusiastically to the revelation that the Google they think they know so well is, it turns out, a multifaceted resource that is capable of delivering the sort of scholarly information that will meet with their professors' approval. Specifically, this article focuses on the fact that many Google Scholar searches link hack to our own Web catalog where they identify useful book titles that direct OPAC keyword searches have missed.
    Date
    2.12.2007 19:39:22
    Footnote
    Beitrag eines Themenheftes "Profiles in digital information"
  14. Aloteibi, S.; Sanderson, M.: Analyzing geographic query reformulation : an exploratory study (2014) 0.00
    0.0019664785 = product of:
      0.029497176 = sum of:
        0.029497176 = sum of:
          0.009866543 = weight(_text_:information in 1177) [ClassicSimilarity], result of:
            0.009866543 = score(doc=1177,freq=8.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.19395474 = fieldWeight in 1177, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1177)
          0.019630633 = weight(_text_:22 in 1177) [ClassicSimilarity], result of:
            0.019630633 = score(doc=1177,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 1177, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1177)
      0.06666667 = coord(1/15)
    
    Abstract
    Search engine users typically engage in multiquery sessions in their quest to fulfill their information needs. Despite a plethora of research findings suggesting that a significant group of users look for information within a specific geographical scope, existing reformulation studies lack a focused analysis of how users reformulate geographic queries. This study comprehensively investigates the ways in which users reformulate such needs in an attempt to fill this gap in the literature. Reformulated sessions were sampled from a query log of a major search engine to extract 2,400 entries that were manually inspected to filter geo sessions. This filter identified 471 search sessions that included geographical intent, and these sessions were analyzed quantitatively and qualitatively. The results revealed that one in five of the users who reformulated their queries were looking for geographically related information. They reformulated their queries by changing the content of the query rather than the structure. Users were not following a unified sequence of modifications and instead performed a single reformulation action. However, in some cases it was possible to anticipate their next move. A number of tasks in geo modifications were identified, including standard, multi-needs, multi-places, and hybrid approaches. The research concludes that it is important to specialize query reformulation studies to focus on particular query types rather than generically analyzing them, as it is apparent that geographic queries have their special reformulation characteristics.
    Date
    26. 1.2014 18:48:22
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.1, S.13-24
  15. Furner, J.: ¬A unifying model of document relatedness for hybrid search engines (2003) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 2717) [ClassicSimilarity], result of:
            0.005919926 = score(doc=2717,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 2717, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
          0.023556758 = weight(_text_:22 in 2717) [ClassicSimilarity], result of:
            0.023556758 = score(doc=2717,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 2717, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
      0.06666667 = coord(1/15)
    
    Abstract
    Previous work an search-engine design has indicated that information-seekers may benefit from being given the opportunity to exploit multiple sources of evidence of document relatedness. Few existing systems, however, give users more than minimal control over the selections that may be made among methods of exploitation. By applying the methods of "document network analysis" (DNA), a unifying, graph-theoretic model of content-, collaboration-, and context-based systems (CCC) may be developed in which the nature of the similarities between types of document relatedness and document ranking are clarified. The usefulness of the approach to system design suggested by this model may be tested by constructing and evaluating a prototype system (UCXtra) that allows searchers to maintain control over the multiple ways in which document collections may be ranked and re-ranked.
    Date
    11. 9.2004 17:32:22
  16. Nicholson, S.; Sierra, T.; Eseryel, U.Y.; Park, J.-H.; Barkow, P.; Pozo, E.J.; Ward, J.: How much of it is real? : analysis of paid placement in Web search engine results (2006) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 5278) [ClassicSimilarity], result of:
            0.005919926 = score(doc=5278,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 5278, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=5278)
          0.023556758 = weight(_text_:22 in 5278) [ClassicSimilarity], result of:
            0.023556758 = score(doc=5278,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 5278, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5278)
      0.06666667 = coord(1/15)
    
    Date
    22. 7.2006 16:32:57
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.448-461
  17. Fluhr, C.: Crosslingual access to photo databases (2012) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 93) [ClassicSimilarity], result of:
            0.005919926 = score(doc=93,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 93, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=93)
          0.023556758 = weight(_text_:22 in 93) [ClassicSimilarity], result of:
            0.023556758 = score(doc=93,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 93, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=93)
      0.06666667 = coord(1/15)
    
    Date
    17. 4.2012 14:25:22
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  18. Chen, L.-C.: Next generation search engine for the result clustering technology (2012) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 105) [ClassicSimilarity], result of:
            0.005919926 = score(doc=105,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 105, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=105)
          0.023556758 = weight(_text_:22 in 105) [ClassicSimilarity], result of:
            0.023556758 = score(doc=105,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 105, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=105)
      0.06666667 = coord(1/15)
    
    Date
    17. 4.2012 15:22:11
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  19. Huvila, I.: Affective capitalism of knowing and the society of search engine (2016) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 3246) [ClassicSimilarity], result of:
            0.005919926 = score(doc=3246,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 3246, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=3246)
          0.023556758 = weight(_text_:22 in 3246) [ClassicSimilarity], result of:
            0.023556758 = score(doc=3246,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 3246, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3246)
      0.06666667 = coord(1/15)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 68(2016) no.5, S.566-588
  20. Su, L.T.: ¬A comprehensive and systematic model of user evaluation of Web search engines : Il. An evaluation by undergraduates (2003) 0.00
    0.0018783542 = product of:
      0.028175311 = sum of:
        0.028175311 = sum of:
          0.008544678 = weight(_text_:information in 2117) [ClassicSimilarity], result of:
            0.008544678 = score(doc=2117,freq=6.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16796975 = fieldWeight in 2117, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2117)
          0.019630633 = weight(_text_:22 in 2117) [ClassicSimilarity], result of:
            0.019630633 = score(doc=2117,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 2117, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2117)
      0.06666667 = coord(1/15)
    
    Abstract
    This paper presents an application of the model described in Part I to the evaluation of Web search engines by undergraduates. The study observed how 36 undergraduate used four major search engines to find information for their own individual problems and how they evaluated these engines based an actual interaction with the search engines. User evaluation was based an 16 performance measures representing five evaluation criteria: relevance, efficiency, utility, user satisfaction, and connectivity. Non-performance (user-related) measures were also applied. Each participant searched his/ her own topic an all four engines and provided satisfaction ratings for system features and interaction and reasons for satisfaction. Each also made relevance judgements of retrieved items in relation to his/her own information need and participated in post-search Interviews to provide reactions to the search results and overall performance. The study found significant differences in precision PR1 relative recall, user satisfaction with output display, time saving, value of search results, and overall performance among the four engines and also significant engine by discipline interactions an all these measures. In addition, the study found significant differences in user satisfaction with response time among four engines, and significant engine by discipline interaction in user satisfaction with search interface. None of the four search engines dominated in every aspect of the multidimensional evaluation. Content analysis of verbal data identified a number of user criteria and users evaluative comments based an these criteria. Results from both quantitative analysis and content analysis provide insight for system design and development, and useful feedback an strengths and weaknesses of search engines for system improvement
    Date
    24. 1.2004 18:27:22
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.13, S.1193-1222

Years

Types

  • a 378
  • el 31
  • m 25
  • s 8
  • x 1
  • More… Less…

Subjects