Search (72 results, page 4 of 4)

  • × language_ss:"e"
  • × theme_ss:"Visualisierung"
  1. Maaten, L. van den; Hinton, G.: Visualizing non-metric similarities in multiple maps (2012) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3884) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3884,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3884, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Machine learning. 87(2012) no.1, S.33-55
  2. Quirin, A.; Cordón, O.; Santamaría, J.; Vargas-Quesada, B.; Moya-Anegón, F.: ¬A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time (2008) 0.00
    1.9323116E-4 = product of:
      0.0044443165 = sum of:
        0.0044443165 = product of:
          0.008888633 = sum of:
            0.008888633 = weight(_text_:1 in 2112) [ClassicSimilarity], result of:
              0.008888633 = score(doc=2112,freq=4.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.15353142 = fieldWeight in 2112, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2112)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    In the last few years, there is an increasing interest to generate visual representations of very large scientific domains. A methodology based on the combined use of ISI-JCR category cocitation and social networks analysis through the use of the Pathfinder algorithm has demonstrated its ability to achieve high quality, schematic visualizations for these kinds of domains. Now, the next step would be to generate these scientograms in an on-line fashion. To do so, there is a need to significantly decrease the run time of the latter pruning technique when working with category cocitation matrices of a large dimension like the ones handled in these large domains (Pathfinder has a time complexity order of O(n4), with n being the number of categories in the cocitation matrix, i.e., the number of nodes in the network). Although a previous improvement called Binary Pathfinder has already been proposed to speed up the original algorithm, its significant time complexity reduction is not enough for that aim. In this paper, we make use of a different shortest path computation from classical approaches in computer science graph theory to propose a new variant of the Pathfinder algorithm which allows us to reduce its time complexity in one order of magnitude, O(n3), and thus to significantly decrease the run time of the implementation when applied to large scientific domains considering the parameter q = n - 1. Besides, the new algorithm has a much simpler structure than the Binary Pathfinder as well as it saves a significant amount of memory with respect to the original Pathfinder by reducing the space complexity to the need of just storing two matrices. An experimental comparison will be developed using large networks from real-world domains to show the good performance of the new proposal.
    Date
    1. 8.2008 12:44:35
  3. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 82) [ClassicSimilarity], result of:
              0.007856515 = score(doc=82,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.1, S.25-38
  4. Hajdu Barat, A.: Human perception and knowledge organization : visual imagery (2007) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 2595) [ClassicSimilarity], result of:
              0.007856515 = score(doc=2595,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 2595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2595)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 1.2009 9:57:50
  5. Collins, L.M.; Hussell, J.A.T.; Hettinga, R.K.; Powell, J.E.; Mane, K.K.; Martinez, M.L.B.: Information visualization and large-scale repositories (2007) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 2596) [ClassicSimilarity], result of:
              0.007856515 = score(doc=2596,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 2596, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2596)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 1.2009 10:01:15
  6. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 2700) [ClassicSimilarity], result of:
              0.007856515 = score(doc=2700,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 2700, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2700)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.1, S.90-110
  7. Burkhard, R.A.: Impulse: using knowledge visualization in business process oriented knowledge infrastructures (2005) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3032) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3032,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3032, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3032)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This article aims to stimulate research on business process oriented knowledge infrastructures by pointing to the power of visualizations. It claims that business process oriented knowledge infrastructure research is stuck and therefore needs to reinvent and revitalize itself with new impulses. One such stimulus is the use of visualization techniques in business process oriented knowledge infrastructures, with the aim to improve knowledge transfer, knowledge communication, and knowledge creation. First, this article presents an overview on related visualization research. Second, it proposes the Knowledge Visualization Framework as a theoretical backbone where business process oriented knowledge infrastructure research can anchor itself. The framework points to the key questions that need to be answered when visual methods are used in business process oriented knowledge infrastructures. Finally, the article compares the Tube Map Visualization with the Gantt Chart, and proves that the new format excels the traditional approach in regards to various tasks. The findings from the evaluation of 44 interviews indicates that the Project Tube Map is more effective for (1) drawing attention and keeping interest, (2) presenting overview and detail, (3) visualizing who is collaborating with whom, (4) motivating people to participate in the project, and (5) increasing recall. The results presented in this paper are important for researchers and practitioners in the fields of Knowledge Management, Knowledge Visualization, Project Management, and Visual Communication Sciences.
  8. Information visualization : human-centered issues and perspectives (2008) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3285) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3285,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3285, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3285)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This book is the outcome of the Dagstuhl Seminar on "Information Visualization - Human-Centered Issues in Visual Representation, Interaction, and Evaluation" held at Dagstuhl Castle, Germany, from May 28 to June 1, 2007. Information Visualization (InfoVis) is a relatively new research area, which focuses on the use of visualization techniques to help people understand and analyze data.This book documents and extends the findings and discussions of the various sessions in detail. The seven contributions cover the most important topics: Part I is on general reflections on the value of information visualization; evaluating information visualizations; theoretical foundations of information visualization; teaching information visualization. Part II deals with specific aspects on creation and collaboration: engaging new audiences for information visualization; process and pitfalls in writing information visualization research papers; and visual analytics: definition, process, and challenges.
  9. Aletras, N.; Baldwin, T.; Lau, J.H.; Stevenson, M.: Evaluating topic representations for exploring document collections (2017) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3325) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3325,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3325, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3325)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.154-167
  10. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3366) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3366,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3366, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3366)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  11. Lin, F.-T.: Drawing a knowledge map of smart city knowledge in academia (2019) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 5454) [ClassicSimilarity], result of:
              0.007856515 = score(doc=5454,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 5454, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5454)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This research takes the academic articles in the Web of Science's core collection database as a corpus to draw a series of knowledge maps, to explore the relationships, connectivity, dis-tribution, and evolution among their keywords with respect to smart cities in the last decade. Beyond just drawing a text cloud or measuring their sizes, we further explore their texture by iden-tifying the hottest keywords in academic articles, construct links between and among them that share common keywords, identify islands, rocks, reefs that are formed by connected articles-a metaphor inspired by Ong et al. (2005)-and analyze trends in their evolution. We found the following phenomena: 1) "Internet of Things" is the most frequently mentioned keyword in recent research articles; 2) the numbers of islands and reefs are increas-ing; 3) the evolutions of the numbers of weighted links have frac-tal-like structure; and, 4) the coverage of the largest rock, formed by articles that share a common keyword, in the largest island is converging into around 10% to 20%. These phenomena imply that a common interest in the technology of smart cities has been emerging among researchers. However, the administrative, social, economic, and cultural issues need more attention in academia in the future.
  12. Burnett, R.: How images think (2004) 0.00
    6.831753E-5 = product of:
      0.0015713031 = sum of:
        0.0015713031 = product of:
          0.0031426062 = sum of:
            0.0031426062 = weight(_text_:1 in 3884) [ClassicSimilarity], result of:
              0.0031426062 = score(doc=3884,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.05428155 = fieldWeight in 3884, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.015625 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 2.1997 9:16:32

Authors

Years

Types

  • a 60
  • el 11
  • m 8
  • s 2
  • p 1
  • r 1
  • x 1
  • More… Less…