Search (7 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Rosemblat, G.; Resnick, M.P.; Auston, I.; Shin, D.; Sneiderman, C.; Fizsman, M.; Rindflesch, T.C.: Extending SemRep to the public health domain (2013) 0.00
    4.4124527E-4 = product of:
      0.0066186786 = sum of:
        0.0066186786 = product of:
          0.013237357 = sum of:
            0.013237357 = weight(_text_:information in 2096) [ClassicSimilarity], result of:
              0.013237357 = score(doc=2096,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2602176 = fieldWeight in 2096, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2096)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    We describe the use of a domain-independent method to extend a natural language processing (NLP) application, SemRep (Rindflesch, Fiszman, & Libbus, 2005), based on the knowledge sources afforded by the Unified Medical Language System (UMLS®; Humphreys, Lindberg, Schoolman, & Barnett, 1998) to support the area of health promotion within the public health domain. Public health professionals require good information about successful health promotion policies and programs that might be considered for application within their own communities. Our effort seeks to improve access to relevant information for the public health profession, to help those in the field remain an information-savvy workforce. Natural language processing and semantic techniques hold promise to help public health professionals navigate the growing ocean of information by organizing and structuring this knowledge into a focused public health framework paired with a user-friendly visualization application as a way to summarize results of PubMed® searches in this field of knowledge.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.1963-1974
  2. Wong, W.; Liu, W.; Bennamoun, M.: Ontology learning from text : a look back and into the future (2010) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 4733) [ClassicSimilarity], result of:
              0.009767379 = score(doc=4733,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 4733, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4733)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Ontologies are often viewed as the answer to the need for inter-operable semantics in modern information systems. The explosion of textual information on the "Read/Write" Web coupled with the increasing demand for ontologies to power the Semantic Web have made (semi-)automatic ontology learning from text a very promising research area. This together with the advanced state in related areas such as natural language processing have fuelled research into ontology learning over the past decade. This survey looks at how far we have come since the turn of the millennium, and discusses the remaining challenges that will define the research directions in this area in the near future.
  3. Vlachidis, A.; Binding, C.; Tudhope, D.; May, K.: Excavating grey literature : a case study on the rich indexing of archaeological documents via natural language-processing techniques and knowledge-based resources (2010) 0.00
    2.941635E-4 = product of:
      0.004412452 = sum of:
        0.004412452 = product of:
          0.008824904 = sum of:
            0.008824904 = weight(_text_:information in 3948) [ClassicSimilarity], result of:
              0.008824904 = score(doc=3948,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1734784 = fieldWeight in 3948, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3948)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Purpose - This paper sets out to discuss the use of information extraction (IE), a natural language-processing (NLP) technique to assist "rich" semantic indexing of diverse archaeological text resources. The focus of the research is to direct a semantic-aware "rich" indexing of diverse natural language resources with properties capable of satisfying information retrieval from online publications and datasets associated with the Semantic Technologies for Archaeological Resources (STAR) project. Design/methodology/approach - The paper proposes use of the English Heritage extension (CRM-EH) of the standard core ontology in cultural heritage, CIDOC CRM, and exploitation of domain thesauri resources for driving and enhancing an Ontology-Oriented Information Extraction process. The process of semantic indexing is based on a rule-based Information Extraction technique, which is facilitated by the General Architecture of Text Engineering (GATE) toolkit and expressed by Java Annotation Pattern Engine (JAPE) rules. Findings - Initial results suggest that the combination of information extraction with knowledge resources and standard conceptual models is capable of supporting semantic-aware term indexing. Additional efforts are required for further exploitation of the technique and adoption of formal evaluation methods for assessing the performance of the method in measurable terms. Originality/value - The value of the paper lies in the semantic indexing of 535 unpublished online documents often referred to as "Grey Literature", from the Archaeological Data Service OASIS corpus (Online AccesS to the Index of archaeological investigationS), with respect to the CRM ontological concepts E49.Time Appellation and P19.Physical Object.
  4. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 2861) [ClassicSimilarity], result of:
              0.008544678 = score(doc=2861,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 2861, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  5. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 2738) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=2738,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
    Source
    Information processing and management. 48(2012) no.3, S.552-568
  6. Helbig, H.: Knowledge representation and the semantics of natural language (2014) 0.00
    2.3255666E-4 = product of:
      0.0034883497 = sum of:
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 2396) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=2396,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 2396, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2396)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the preservation of cultural achievements and their transmission from one generation to the other. During the last few decades, the flod of digitalized information has been growing tremendously. This tendency will continue with the globalisation of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical understanding and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this context, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the generation of natural language expressions from formal representations. This book presents a method for the semantic representation of natural language expressions (texts, sentences, phrases, etc.) which can be used as a universal knowledge representation paradigm in the human sciences, like linguistics, cognitive psychology, or philosophy of language, as well as in computational linguistics and in artificial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
  7. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 267) [ClassicSimilarity], result of:
              0.00690658 = score(doc=267,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 267, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of Intelligent Information Systems