Search (18 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.03
    0.025898982 = product of:
      0.051797964 = sum of:
        0.0071393843 = weight(_text_:in in 4217) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=4217,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 4217, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=4217)
        0.032829512 = weight(_text_:und in 4217) [ClassicSimilarity], result of:
          0.032829512 = score(doc=4217,freq=24.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.33931053 = fieldWeight in 4217, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=4217)
        0.011829065 = product of:
          0.02365813 = sum of:
            0.02365813 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.02365813 = score(doc=4217,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Jetzt scheint es allmählich ans Eingemachte zu gehen. Ein von der chinesischen Alibaba-Gruppe entwickelte KI-Programm konnte erstmals Menschen in der Beantwortung von Fragen und dem Verständnis von Text schlagen. Die chinesische Regierung will das Land führend in der Entwicklung von Künstlicher Intelligenz machen und hat dafür eine nationale Strategie aufgestellt. Dazu ernannte das Ministerium für Wissenschaft und Technik die Internetkonzerne Baidu, Alibaba und Tencent sowie iFlyTek zum ersten nationalen Team für die Entwicklung der KI-Technik der nächsten Generation. Baidu ist zuständig für die Entwicklung autonomer Fahrzeuge, Alibaba für die Entwicklung von Clouds für "city brains" (Smart Cities sollen sich an ihre Einwohner und ihre Umgebung anpassen), Tencent für die Enwicklung von Computervision für medizinische Anwendungen und iFlyTec für "Stimmenintelligenz". Die vier Konzerne sollen offene Plattformen herstellen, die auch andere Firmen und Start-ups verwenden können. Überdies wird bei Peking für eine Milliarde US-Dollar ein Technologiepark für die Entwicklung von KI gebaut. Dabei geht es selbstverständlich nicht nur um zivile Anwendungen, sondern auch militärische. Noch gibt es in den USA mehr KI-Firmen, aber China liegt bereits an zweiter Stelle. Das Pentagon ist beunruhigt. Offenbar kommt China rasch vorwärts. Ende 2017 stellte die KI-Firma iFlyTek, die zunächst auf Stimmerkennung und digitale Assistenten spezialisiert war, einen Roboter vor, der den schriftlichen Test der nationalen Medizinprüfung erfolgreich bestanden hatte. Der Roboter war nicht nur mit immensem Wissen aus 53 medizinischen Lehrbüchern, 2 Millionen medizinischen Aufzeichnungen und 400.000 medizinischen Texten und Berichten gefüttert worden, er soll von Medizinexperten klinische Erfahrungen und Falldiagnosen übernommen haben. Eingesetzt werden soll er, in China herrscht vor allem auf dem Land, Ärztemangel, als Helfer, der mit der automatischen Auswertung von Patientendaten eine erste Diagnose erstellt und ansonsten Ärzten mit Vorschlägen zur Seite stehen.
    Date
    22. 1.2018 11:32:44
  2. Baierer, K.; Zumstein, P.: Verbesserung der OCR in digitalen Sammlungen von Bibliotheken (2016) 0.02
    0.015702762 = product of:
      0.04710828 = sum of:
        0.014278769 = weight(_text_:in in 2818) [ClassicSimilarity], result of:
          0.014278769 = score(doc=2818,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24046129 = fieldWeight in 2818, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2818)
        0.032829512 = weight(_text_:und in 2818) [ClassicSimilarity], result of:
          0.032829512 = score(doc=2818,freq=6.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.33931053 = fieldWeight in 2818, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=2818)
      0.33333334 = coord(2/6)
    
    Abstract
    Möglichkeiten zur Verbesserung der automatischen Texterkennung (OCR) in digitalen Sammlungen insbesondere durch computerlinguistische Methoden werden beschrieben und bisherige PostOCR-Verfahren analysiert. Im Gegensatz zu diesen Möglichkeiten aus der Forschung oder aus einzelnen Projekten unterscheidet sich die momentane Anwendung von OCR in der Bibliothekspraxis wesentlich und nutzt das Potential nur teilweise aus.
    Content
    Beitrag in einem Themenschwerpunkt 'Computerlinguistik und Bibliotheken'. Vgl.: http://0277.ch/ojs/index.php/cdrs_0277/article/view/155/353.
  3. Franke-Maier, M.: Computerlinguistik und Bibliotheken : Editorial (2016) 0.02
    0.01548963 = product of:
      0.04646889 = sum of:
        0.010929906 = weight(_text_:in in 3206) [ClassicSimilarity], result of:
          0.010929906 = score(doc=3206,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18406484 = fieldWeight in 3206, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3206)
        0.035538986 = weight(_text_:und in 3206) [ClassicSimilarity], result of:
          0.035538986 = score(doc=3206,freq=18.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.3673144 = fieldWeight in 3206, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3206)
      0.33333334 = coord(2/6)
    
    Abstract
    Vor 50 Jahren, im Februar 1966, wies Floyd M. Cammack auf den Zusammenhang von "Linguistics and Libraries" hin. Er ging dabei von dem Eintrag für "Linguistics" in den Library of Congress Subject Headings (LCSH) von 1957 aus, der als Verweis "See Language and Languages; Philology; Philology, Comparative" enthielt. Acht Jahre später kamen unter dem Schlagwort "Language and Languages" Ergänzungen wie "language data processing", "automatic indexing", "machine translation" und "psycholinguistics" hinzu. Für Cammack zeigt sich hier ein Netz komplexer Wechselbeziehungen, die unter dem Begriff "Linguistics" zusammengefasst werden sollten. Dieses System habe wichtigen Einfluss auf alle, die mit dem Sammeln, Organisieren, Speichern und Wiederauffinden von Informationen befasst seien. (Cammack 1966:73). Hier liegt - im übertragenen Sinne - ein Heft vor Ihnen, in dem es um computerlinguistische Verfahren in Bibliotheken geht. Letztlich geht es um eine Versachlichung der Diskussion, um den Stellenwert der Inhaltserschliessung und die Rekalibrierung ihrer Wertschätzung in Zeiten von Mega-Indizes und Big Data. Der derzeitige Widerspruch zwischen dem Wunsch nach relevanter Treffermenge in Rechercheoberflächen vs. der Erfahrung des Relevanz-Rankings ist zu lösen. Explizit auch die Frage, wie oft wir von letzterem enttäuscht wurden und was zu tun ist, um das Verhältnis von recall und precision wieder in ein angebrachtes Gleichgewicht zu bringen. Unsere Nutzerinnen und Nutzer werden es uns danken.
    Content
    Editorial zu einem Themenschwerpunkt 'Computerlinguistik und Bibliotheken'. Vgl-: http://0277.ch/ojs/index.php/cdrs_0277/article/view/159/349.
  4. Rötzer, F.: Kann KI mit KI generierte Texte erkennen? (2019) 0.01
    0.013138894 = product of:
      0.039416682 = sum of:
        0.006246961 = weight(_text_:in in 3977) [ClassicSimilarity], result of:
          0.006246961 = score(doc=3977,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 3977, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3977)
        0.03316972 = weight(_text_:und in 3977) [ClassicSimilarity], result of:
          0.03316972 = score(doc=3977,freq=8.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.34282678 = fieldWeight in 3977, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3977)
      0.33333334 = coord(2/6)
    
    Abstract
    OpenAI hat einen Algorithmus zur Textgenerierung angeblich nicht vollständig veröffentlicht, weil er so gut sei und Missbrauch und Täuschung ermöglicht. Das u.a. von Elon Musk und Peter Thiel gegründete KI-Unternehmen OpenAI hatte im Februar erklärt, man habe den angeblich am weitesten fortgeschrittenen Algorithmus zur Sprachverarbeitung entwickelt. Der Algorithmus wurde lediglich anhand von 40 Gigabyte an Texten oder an 8 Millionen Webseiten trainiert, das nächste Wort in einem vorgegebenen Textausschnitt vorherzusagen. Damit könne man zusammenhängende, sinnvolle Texte erzeugen, die vielen Anforderungen genügen, zudem könne damit rudimentär Leseverständnis, Antworten auf Fragen, Zusammenfassungen und Übersetzungen erzeugt werden, ohne dies trainiert zu haben.
  5. Menge-Sonnentag, R.: Google veröffentlicht einen Parser für natürliche Sprache (2016) 0.01
    0.012050665 = product of:
      0.036151994 = sum of:
        0.0061828885 = weight(_text_:in in 2941) [ClassicSimilarity], result of:
          0.0061828885 = score(doc=2941,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1041228 = fieldWeight in 2941, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2941)
        0.029969105 = weight(_text_:und in 2941) [ClassicSimilarity], result of:
          0.029969105 = score(doc=2941,freq=20.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.3097467 = fieldWeight in 2941, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=2941)
      0.33333334 = coord(2/6)
    
    Abstract
    SyntaxNet zerlegt Sätze in ihre grammatikalischen Bestandteile und bestimmt die syntaktischen Beziehungen der Wörter untereinander. Das Framework ist Open Source und als TensorFlow Model implementiert. Ein Parser für natürliche Sprache ist eine Software, die Sätze in ihre grammatikalischen Bestandteile zerlegt. Diese Zerlegung ist notwendig, damit Computer Befehle verstehen oder Texte übersetzen können. Die digitalen Helfer wie Microsofts Cortana, Apples Siri und Google Now verwenden Parser, um Sätze wie "Stell den Wecker auf 5 Uhr!" richtig umzusetzen. SyntaxNet ist ein solcher Parser, den Google als TensorFlow Model veröffentlicht hat. Entwickler können eigene Modelle erstellen, und SnytaxNet bringt einen vortrainierten Parser für die englische Sprache mit, den seine Macher Parsey McParseface genannt haben.
    Content
    "Syntaktische Beziehungen Der Parser teilt den Wörtern eine syntaktische Funktion zu und untersucht die syntaktischen Beziehungen zwischen den Einzelteilen. Den englischen Beispielsatz aus dem Blog-Beitrag "Alice saw Bob" analysiert er folgendermaßen: "Alice" und "Bob" sind Substantive, und "saw" ist ein Verb. Letzteres ist gleichzeitig die Wurzel (ROOT), von der die restlichen Beziehungen ausgehen. Alice ist das zugehörige Subjekt (nsubj) und Bob das Objekt (dobj). Längere Sätze werden leicht mehrdeutig. Beispielsweise ist im Satz "Alice sah Bob mit dem Fernglas" nicht erkennbar, wer von den beiden das Fernglas in der Hand hält. Rein syntaktisch ist auch der Satz "Peter schneidet das Brot mit Sonnenblumenkernen" mehrdeutig. Das menschliche Gehirn erkennt die richtige Bedeutung recht zuverlässig, aber für maschinelle Parser stellen sie eine Herausforderung dar.
    SyntaxNet nutzt zur Entscheidung neuronale Netze und versucht die Abhängigkeiten richtig zuzuordnen. Damit "lernt" der Parser, dass es schwierig ist, Sonnenblumenkerne zum Schneiden einzusetzen, und sie somit wohl eher Bestandteil des Brots als ein Werkzeug sind. Die Analyse beschränkt sich jedoch auf den Satz selbst. Semantische Zusammenhänge berücksichtigt das Modell nicht. So lösen sich manche Mehrdeutigkeiten durch den Kontext auf: Wenn Alice im obigen Beispiel das Fernglas beim Verlassen des Hauses eingepackt hat, wird sie es vermutlich benutzen. Trefferquote Mensch vs. Maschine Laut dem Blog-Beitrag kommt Parsey McParseface auf eine Genauigkeit von gut 94 Prozent für Sätze aus dem Penn Treebank Project. Die menschliche Quote soll laut Linguisten bei 96 bis 97 Prozent liegen. Allerdings weist der Beitrag auch darauf hin, dass es sich bei den Testsätzen um wohlgeformte Texte handelt. Im Test mit Googles WebTreebank erreicht der Parser eine Genauigkeit von knapp 90 Prozent."
  6. RWI/PH: Auf der Suche nach dem entscheidenden Wort : die Häufung bestimmter Wörter innerhalb eines Textes macht diese zu Schlüsselwörtern (2012) 0.01
    0.0113822585 = product of:
      0.034146775 = sum of:
        0.011669946 = weight(_text_:in in 331) [ClassicSimilarity], result of:
          0.011669946 = score(doc=331,freq=38.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19652747 = fieldWeight in 331, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=331)
        0.02247683 = weight(_text_:und in 331) [ClassicSimilarity], result of:
          0.02247683 = score(doc=331,freq=20.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.23231003 = fieldWeight in 331, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0234375 = fieldNorm(doc=331)
      0.33333334 = coord(2/6)
    
    Abstract
    Der Mensch kann komplexe Sachverhalte in eine eindimensionale Abfolge von Buchstaben umwandeln und niederschreiben. Dabei dienen Schlüsselwörter dazu, den Inhalt des Textes zu vermitteln. Wie Buchstaben und Wörtern mit dem Thema eines Textes zusammenhängen, haben Eduardo Altmann und seine Kollegen vom Max-Planck-Institut für die Physik komplexer Systeme und der Universität Bologna mit Hilfe von statistischen Methoden untersucht. Dabei haben sie herausgefunden, dass Schlüsselwörter nicht dadurch gekennzeichnet sind, dass sie im ganzen Text besonders häufig vorkommen, sondern nur an bestimmten Stellen vermehrt zu finden sind. Außerdem gibt es Beziehungen zwischen weit entfernten Textabschnitten, in der Form, dass dieselben Wörter und Buchstaben bevorzugt verwendet werden.
    Content
    "Die Dresdner Wissenschaftler haben die semantischen Eigenschaften von Texten mathematisch untersucht, indem sie zehn verschiedene englische Texte in unterschiedlichen Formen kodierten. Dazu zählt unter anderem die englische Ausgabe von Leo Tolstois "Krieg und Frieden". Beispielsweise übersetzten die Forscher Buchstaben innerhalb eines Textes in eine Binär-Sequenz. Dazu ersetzten sie alle Vokale durch eine Eins und alle Konsonanten durch eine Null. Mit Hilfe weiterer mathematischer Funktionen beleuchteten die Wissenschaftler dabei verschiedene Ebenen des Textes, also sowohl einzelne Vokale, Buchstaben als auch ganze Wörter, die in verschiedenen Formen kodiert wurden. Innerhalb des ganzen Textes lassen sich so wiederkehrende Muster finden. Diesen Zusammenhang innerhalb des Textes bezeichnet man als Langzeitkorrelation. Diese gibt an, ob zwei Buchstaben an beliebig weit voneinander entfernten Textstellen miteinander in Verbindung stehen - beispielsweise gibt es wenn wir an einer Stelle einen Buchstaben "K" finden, eine messbare höhere Wahrscheinlichkeit den Buchstaben "K" einige Seiten später nochmal zu finden. "Es ist zu erwarten, dass wenn es in einem Buch an einer Stelle um Krieg geht, die Wahrscheinlichkeit hoch ist das Wort Krieg auch einige Seiten später zu finden. Überraschend ist es, dass wir die hohe Wahrscheinlichkeit auch auf der Buchstabenebene finden", so Altmann.
    Schlüsselwörter häufen sich in einzelnen Textpassagen Dabei haben sie die Langzeitkorrelation sowohl zwischen einzelnen Buchstaben, als auch innerhalb höherer sprachlicher Ebenen wie Wörtern gefunden. Innerhalb einzelner Ebenen bleibt die Korrelation dabei erhalten, wenn man verschiedene Texte betrachtet. "Viel interessanter ist es für uns zu überprüfen, wie die Korrelation sich zwischen den Ebenen ändert", sagt Altmann. Die Langzeitkorrelation erlaubt Rückschlüsse, inwieweit einzelne Wörter mit einem Thema in Verbindungen stehen. "Auch die Verbindung zwischen einem Wort und den Buchstaben, aus denen es sich zusammensetzt, lässt sich so analysieren", so Altmann. Darüber hinaus untersuchten die Wissenschaftler auch die sogenannte "Burstiness", die beschreibt, ob ein Zeichenmuster in einer Textpassage vermehrt zu finden ist. Sie zeigt also beispielsweise an, ob ein Wort in einem bestimmten Abschnitt gehäuft vorkommt. Je häufiger ein bestimmtes Wort in einer Passage verwendet wird, desto wahrscheinlicher ist es, dass diese repräsentativ für ein bestimmtes Thema ist. Die Wissenschaftler zeigten, dass bestimmte Wörter zwar im ganzen Text immer wieder vorkommen, aber nicht in einem bestimmten Abschnitt verstärkt zu finden sind. Diese Wörter weisen zwar eine Langzeitkorrelation auf, stehen aber nicht in einer engen Verbindung mit dem Thema. "Das beste Beispiel dafür sind Artikel. Sie kommen in jedem Text sehr oft vor, sind aber nicht entscheidend um ein bestimmtes Thema zu vermitteln", so Altmann.
    Die statistische Textanalyse funktioniert unabhängig von der Sprache Während sowohl Buchstaben als auch Wörter Langzeit-korreliert sind, kommen Buchstaben nur selten an bestimmten Stellen eines Textes gehäuft vor. "Ein Buchstabe ist eben nur sehr selten so eng mit einem Thema verknüpft wie das Wort zu dem er einen Teil beiträgt. Buchstaben sind sozusagen flexibler einsetzbar", sagt Altmann. Ein "a" beispielsweise kann zu einer ganzen Reihe von Wörtern beitragen, die nicht mit demselben Thema in Verbindung stehen. Mit Hilfe der statistischen Analyse von Texten ist es den Forschern gelungen, die prägenden Wörter eines Textes auf einfache Weise zu ermitteln. "Dabei ist es vollkommen egal, in welcher Sprache ein Text geschrieben ist. Es geht nur noch um die Geschichte und nicht um sprachspezifische Regeln", sagt Altmann. Die Ergebnisse könnten zukünftig zur Verbesserung von Internetsuchmaschinen beitragen, aber auch bei Textanalysen und der Suche nach Plagiaten helfen."
    Footnote
    Pressemitteilung zum Artikel: Eduardo G. Altmann, Giampaolo Cristadoro and Mirko Degli Esposti: On the origin of long-range correlations in texts. In: Proceedings of the National Academy of Sciences, 2. Juli 2012. DOI: 10.1073/pnas.1117723109.
  7. Holland, M.: Erstes wissenschaftliches Buch eines Algorithmus' veröffentlicht (2019) 0.01
    0.009900499 = product of:
      0.029701497 = sum of:
        0.006246961 = weight(_text_:in in 5227) [ClassicSimilarity], result of:
          0.006246961 = score(doc=5227,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 5227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5227)
        0.023454536 = weight(_text_:und in 5227) [ClassicSimilarity], result of:
          0.023454536 = score(doc=5227,freq=4.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.24241515 = fieldWeight in 5227, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5227)
      0.33333334 = coord(2/6)
    
    Abstract
    Der Wissenschaftsverlag Springer Nature hat nach eigenen Angaben das erste Buch veröffentlicht, das von einem Algorithmus verfasst wurde. Bei Springer Nature ist das nach Angaben des Wissenschaftsverlags erste maschinengenerierte Buch erschienen: "Lithium-Ion Batteries - A Machine-Generated Summary of Current Research" biete einen Überblick über die neuesten Forschungspublikationen über Lithium-Ionen-Batterien, erklärte die Goethe-Universität Frankfurt am Main. Dort wurde im Bereich Angewandte Computerlinguistik unter der Leitung von Christian Chiarcos jenes Verfahren entwickelt, das Textinhalte automatisch analysiert und relevante Publikationen auswählen kann. Es heißt "Beta Writer" und steht als Autor über dem Buch.
    Content
    Das Buch enthält eine Einleitung, in der die Vorgehensweise zur Erstellung des Buches geschildert wird.
  8. Voss, O.: Übersetzer überflüssig? : Sprachsoftware DeepL und Acrolinx (2019) 0.01
    0.006701296 = product of:
      0.040207777 = sum of:
        0.040207777 = weight(_text_:und in 4981) [ClassicSimilarity], result of:
          0.040207777 = score(doc=4981,freq=4.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.41556883 = fieldWeight in 4981, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.09375 = fieldNorm(doc=4981)
      0.16666667 = coord(1/6)
    
    Source
    https://www.tagesspiegel.de/wirtschaft/sprachsoftware-deepl-und-acrolinx-uebersetzer-ueberfluessig/23884348.html
  9. Altmann, E.G.; Cristadoro, G.; Esposti, M.D.: On the origin of long-range correlations in texts (2012) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 330) [ClassicSimilarity], result of:
          0.013115887 = score(doc=330,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 330, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=330)
      0.16666667 = coord(1/6)
    
    Abstract
    The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.
  10. Zadeh, B.Q.; Handschuh, S.: ¬The ACL RD-TEC : a dataset for benchmarking terminology extraction and classification in computational linguistics (2014) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 2803) [ClassicSimilarity], result of:
          0.011973113 = score(doc=2803,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 2803, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2803)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper introduces ACL RD-TEC: a dataset for evaluating the extraction and classification of terms from literature in the domain of computational linguistics. The dataset is derived from the Association for Computational Linguistics anthology reference corpus (ACL ARC). In its first release, the ACL RD-TEC consists of automatically segmented, part-of-speech-tagged ACL ARC documents, three lists of candidate terms, and more than 82,000 manually annotated terms. The annotated terms are marked as either valid or invalid, and valid terms are further classified as technology and non-technology terms. Technology terms signify methods, algorithms, and solutions in computational linguistics. The paper describes the dataset and reports the relevant statistics. We hope the step described in this paper encourages a collaborative effort towards building a full-fledged annotated corpus from the computational linguistics literature.
  11. Perovsek, M.; Kranjca, J.; Erjaveca, T.; Cestnika, B.; Lavraca, N.: TextFlows : a visual programming platform for text mining and natural language processing (2016) 0.00
    0.0017848461 = product of:
      0.010709076 = sum of:
        0.010709076 = weight(_text_:in in 2697) [ClassicSimilarity], result of:
          0.010709076 = score(doc=2697,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 2697, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2697)
      0.16666667 = coord(1/6)
    
    Abstract
    Text mining and natural language processing are fast growing areas of research, with numerous applications in business, science and creative industries. This paper presents TextFlows, a web-based text mining and natural language processing platform supporting workflow construction, sharing and execution. The platform enables visual construction of text mining workflows through a web browser, and the execution of the constructed workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the construction and sharing of text processing workflows, which can be reused in various applications. The paper presents the implemented text mining and language processing modules, and describes some precomposed workflows. Their features are demonstrated on three use cases: comparison of document classifiers and of different part-of-speech taggers on a text categorization problem, and outlier detection in document corpora.
    Source
    Science of computer programming. In Press, 2016
  12. Kiela, D.; Clark, S.: Detecting compositionality of multi-word expressions using nearest neighbours in vector space models (2013) 0.00
    0.001682769 = product of:
      0.010096614 = sum of:
        0.010096614 = weight(_text_:in in 1161) [ClassicSimilarity], result of:
          0.010096614 = score(doc=1161,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.17003182 = fieldWeight in 1161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1161)
      0.16666667 = coord(1/6)
    
    Abstract
    We present a novel unsupervised approach to detecting the compositionality of multi-word expressions. We compute the compositionality of a phrase through substituting the constituent words with their "neighbours" in a semantic vector space and averaging over the distance between the original phrase and the substituted neighbour phrases. Several methods of obtaining neighbours are presented. The results are compared to existing supervised results and achieve state-of-the-art performance on a verb-object dataset of human compositionality ratings.
  13. Stoykova, V.; Petkova, E.: Automatic extraction of mathematical terms for precalculus (2012) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 156) [ClassicSimilarity], result of:
          0.008834538 = score(doc=156,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 156, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=156)
      0.16666667 = coord(1/6)
    
    Abstract
    In this work, we present the results of research for evaluating a methodology for extracting mathematical terms for precalculus using the techniques for semantically-oriented statistical search. We use the corpus-based approach and the combination of different statistically-based techniques for extracting keywords, collocations and co-occurrences incorporated in the Sketch Engine software. We evaluate the collocations candidate terms for the basic concept function(s) and approve the related methodology by precalculus domain conceptual terms definitions. Finally, we offer a conceptual terms hierarchical representation and discuss the results with respect to their possible applications.
  14. Bedathur, S.; Narang, A.: Mind your language : effects of spoken query formulation on retrieval effectiveness (2013) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 1150) [ClassicSimilarity], result of:
          0.008834538 = score(doc=1150,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 1150, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1150)
      0.16666667 = coord(1/6)
    
    Abstract
    Voice search is becoming a popular mode for interacting with search engines. As a result, research has gone into building better voice transcription engines, interfaces, and search engines that better handle inherent verbosity of queries. However, when one considers its use by non- native speakers of English, another aspect that becomes important is the formulation of the query by users. In this paper, we present the results of a preliminary study that we conducted with non-native English speakers who formulate queries for given retrieval tasks. Our results show that the current search engines are sensitive in their rankings to the query formulation, and thus highlights the need for developing more robust ranking methods.
  15. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N.: Generating Wikipedia by summarizing long sequences (2018) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 773) [ClassicSimilarity], result of:
          0.008834538 = score(doc=773,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 773, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=773)
      0.16666667 = coord(1/6)
    
    Abstract
    We show that generating English Wikipedia articles can be approached as a multi-document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
  16. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 2861) [ClassicSimilarity], result of:
          0.007728611 = score(doc=2861,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 2861, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
      0.16666667 = coord(1/6)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.: Attention Is all you need (2017) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 970) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=970,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 970, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=970)
      0.16666667 = coord(1/6)
    
    Abstract
    The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
  18. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 267) [ClassicSimilarity], result of:
          0.006246961 = score(doc=267,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 267, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=267)
      0.16666667 = coord(1/6)
    
    Abstract
    Domain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is- part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.