Search (57 results, page 1 of 3)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  • × year_i:[2020 TO 2030}
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.06
    0.05940105 = sum of:
      0.054862697 = product of:
        0.21945079 = sum of:
          0.21945079 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
            0.21945079 = score(doc=862,freq=2.0), product of:
              0.39046928 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046056706 = queryNorm
              0.56201804 = fieldWeight in 862, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=862)
        0.25 = coord(1/4)
      0.004538352 = product of:
        0.009076704 = sum of:
          0.009076704 = weight(_text_:a in 862) [ClassicSimilarity], result of:
            0.009076704 = score(doc=862,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1709182 = fieldWeight in 862, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=862)
        0.5 = coord(1/2)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
    Type
    a
  2. ¬Der Student aus dem Computer (2023) 0.05
    0.048416097 = product of:
      0.09683219 = sum of:
        0.09683219 = sum of:
          0.009471525 = weight(_text_:a in 1079) [ClassicSimilarity], result of:
            0.009471525 = score(doc=1079,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 1079, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.109375 = fieldNorm(doc=1079)
          0.087360665 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
            0.087360665 = score(doc=1079,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.5416616 = fieldWeight in 1079, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=1079)
      0.5 = coord(1/2)
    
    Date
    27. 1.2023 16:22:55
    Type
    a
  3. Morris, V.: Automated language identification of bibliographic resources (2020) 0.03
    0.02766634 = product of:
      0.05533268 = sum of:
        0.05533268 = sum of:
          0.0054123 = weight(_text_:a in 5749) [ClassicSimilarity], result of:
            0.0054123 = score(doc=5749,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 5749, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
          0.04992038 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
            0.04992038 = score(doc=5749,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 5749, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
      0.5 = coord(1/2)
    
    Date
    2. 3.2020 19:04:22
    Type
    a
  4. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.03
    0.02766634 = product of:
      0.05533268 = sum of:
        0.05533268 = sum of:
          0.0054123 = weight(_text_:a in 835) [ClassicSimilarity], result of:
            0.0054123 = score(doc=835,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 835, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=835)
          0.04992038 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
            0.04992038 = score(doc=835,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 835, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=835)
      0.5 = coord(1/2)
    
    Date
    29.12.2022 18:22:55
    Type
    a
  5. Rieger, F.: Lügende Computer (2023) 0.03
    0.02766634 = product of:
      0.05533268 = sum of:
        0.05533268 = sum of:
          0.0054123 = weight(_text_:a in 912) [ClassicSimilarity], result of:
            0.0054123 = score(doc=912,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 912, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=912)
          0.04992038 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
            0.04992038 = score(doc=912,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 912, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=912)
      0.5 = coord(1/2)
    
    Date
    16. 3.2023 19:22:55
    Type
    a
  6. Hausser, R.: Grammatical disambiguation : the linear complexity hypothesis for natural language (2020) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 22) [ClassicSimilarity], result of:
              0.011481222 = score(doc=22,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 22, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=22)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    DBS uses a strictly time-linear derivation order. Therefore the basic computational complexity degree of DBS is linear time. The only way to increase DBS complexity above linear is repeating ambiguity. In natural language, however, repeating ambiguity is prevented by grammatical disambiguation. A classic example of a grammatical ambiguity is the 'garden path' sentence The horse raced by the barn fell. The continuation horse+raced introduces an ambiguity between horse which raced and horse which was raced, leading to two parallel derivation strands up to The horse raced by the barn. Depending on whether the continuation is interpunctuation or a verb, they are grammatically disambiguated, resulting in unambiguous output. A repeated ambiguity occurs in The man who loves the woman who feeds Lucy who Peter loves., with who serving as subject or as object. These readings are grammatically disambiguated by continuing after who with a verb or a noun.
    Type
    a
  7. Roose, K.: ¬The brilliance and weirdness of ChatGPT (2022) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 853) [ClassicSimilarity], result of:
              0.011481222 = score(doc=853,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 853, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=853)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A new chatbot from OpenAI is inspiring awe, fear, stunts and attempts to circumvent its guardrails.
    Type
    a
  8. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 103) [ClassicSimilarity], result of:
              0.010696997 = score(doc=103,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 103, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=103)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.
    Type
    a
  9. Collard, J.; Paiva, V. de; Fong, B.; Subrahmanian, E.: Extracting mathematical concepts from text (2022) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 668) [ClassicSimilarity], result of:
              0.010589487 = score(doc=668,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 668, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate different systems for extracting mathematical entities from English texts in the mathematical field of category theory as a first step for constructing a mathematical knowledge graph. We consider four different term extractors and compare their results. This small experiment showcases some of the issues with the construction and evaluation of terms extracted from noisy domain text. We also make available two open corpora in research mathematics, in particular in category theory: a small corpus of 755 abstracts from the journal TAC (3188 sentences), and a larger corpus from the nLab community wiki (15,000 sentences).
    Type
    a
  10. Escolano, C.; Costa-Jussà, M.R.; Fonollosa, J.A.: From bilingual to multilingual neural-based machine translation by incremental training (2021) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 97) [ClassicSimilarity], result of:
              0.010148063 = score(doc=97,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 97, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=97)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A common intermediate language representation in neural machine translation can be used to extend bilingual systems by incremental training. We propose a new architecture based on introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we can train multiple encoders and decoders for each language, sharing among them a common intermediate representation. Translation results on the low-resource tasks (Turkish-English and Kazakh-English tasks) show a BLEU improvement of up to 2.8 points. However, results on a larger dataset (Russian-English and Kazakh-English) show BLEU losses of a similar amount. While our system provides improvements only for the low-resource tasks in terms of translation quality, our system is capable of quickly deploying new language pairs without the need to retrain the rest of the system, which may be a game changer in some situations. Specifically, what is most relevant regarding our architecture is that it is capable of: reducing the number of production systems, with respect to the number of languages, from quadratic to linear; incrementally adding a new language to the system without retraining the languages already there; and allowing for translations from the new language to all the others present in the system.
    Type
    a
  11. Soni, S.; Lerman, K.; Eisenstein, J.: Follow the leader : documents on the leading edge of semantic change get more citations (2021) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 169) [ClassicSimilarity], result of:
              0.009567685 = score(doc=169,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 169, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=169)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Diachronic word embeddings-vector representations of words over time-offer remarkable insights into the evolution of language and provide a tool for quantifying sociocultural change from text documents. Prior work has used such embeddings to identify shifts in the meaning of individual words. However, simply knowing that a word has changed in meaning is insufficient to identify the instances of word usage that convey the historical meaning or the newer meaning. In this study, we link diachronic word embeddings to documents, by situating those documents as leaders or laggards with respect to ongoing semantic changes. Specifically, we propose a novel method to quantify the degree of semantic progressiveness in each word usage, and then show how these usages can be aggregated to obtain scores for each document. We analyze two large collections of documents, representing legal opinions and scientific articles. Documents that are scored as semantically progressive receive a larger number of citations, indicating that they are especially influential. Our work thus provides a new technique for identifying lexical semantic leaders and demonstrates a new link between progressive use of language and influence in a citation network.
    Type
    a
  12. Lobo, S.: ¬Das Ende von Google, wie wir es kannten : Bessere Treffer durch ChatGPT (2022) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 852) [ClassicSimilarity], result of:
              0.009567685 = score(doc=852,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 852, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=852)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    https://www.spiegel.de/netzwelt/netzpolitik/bessere-treffer-durch-chatgpt-das-ende-von-google-wie-wir-es-kannten-kolumne-a-77820af6-51d7-4c03-b822-cf93094fd709
    Type
    a
  13. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 872) [ClassicSimilarity], result of:
              0.009374379 = score(doc=872,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 872, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
    Type
    a
  14. Lund, B.D.; Wang, T.; Mannuru, N.R.; Nie, B.; Shimray, S.; Wang, Z.: ChatGPT and a new academic reality : artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing (2023) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 943) [ClassicSimilarity], result of:
              0.009076704 = score(doc=943,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 943, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article discusses OpenAI's ChatGPT, a generative pre-trained transformer, which uses natural language processing to fulfill text-based user requests (i.e., a "chatbot"). The history and principles behind ChatGPT and similar models are discussed. This technology is then discussed in relation to its potential impact on academia and scholarly research and publishing. ChatGPT is seen as a potential model for the automated preparation of essays and other types of scholarly manuscripts. Potential ethical issues that could arise with the emergence of large language models like GPT-3, the underlying technology behind ChatGPT, and its usage by academics and researchers, are discussed and situated within the context of broader advancements in artificial intelligence, machine learning, and natural language processing for research and scholarly publishing.
    Type
    a
  15. Suissa, O.; Elmalech, A.; Zhitomirsky-Geffet, M.: Text analysis using deep neural networks in digital humanities and information science (2022) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 491) [ClassicSimilarity], result of:
              0.008285859 = score(doc=491,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 491, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=491)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Combining computational technologies and humanities is an ongoing effort aimed at making resources such as texts, images, audio, video, and other artifacts digitally available, searchable, and analyzable. In recent years, deep neural networks (DNN) dominate the field of automatic text analysis and natural language processing (NLP), in some cases presenting a super-human performance. DNNs are the state-of-the-art machine learning algorithms solving many NLP tasks that are relevant for Digital Humanities (DH) research, such as spell checking, language detection, entity extraction, author detection, question answering, and other tasks. These supervised algorithms learn patterns from a large number of "right" and "wrong" examples and apply them to new examples. However, using DNNs for analyzing the text resources in DH research presents two main challenges: (un)availability of training data and a need for domain adaptation. This paper explores these challenges by analyzing multiple use-cases of DH studies in recent literature and their possible solutions and lays out a practical decision model for DH experts for when and how to choose the appropriate deep learning approaches for their research. Moreover, in this paper, we aim to raise awareness of the benefits of utilizing deep learning models in the DH community.
    Type
    a
  16. Park, J.S.; O'Brien, J.C.; Cai, C.J.; Ringel Morris, M.; Liang, P.; Bernstein, M.S.: Generative agents : interactive simulacra of human behavior (2023) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 972) [ClassicSimilarity], result of:
              0.008285859 = score(doc=972,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 972, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=972)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
    Type
    a
  17. Al-Khatib, K.; Ghosa, T.; Hou, Y.; Waard, A. de; Freitag, D.: Argument mining for scholarly document processing : taking stock and looking ahead (2021) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 568) [ClassicSimilarity], result of:
              0.008202582 = score(doc=568,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 568, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=568)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Argument mining targets structures in natural language related to interpretation and persuasion. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions, which could benefit from argument mining techniques. However, While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.
    Type
    a
  18. Müller, P.: Text-Automat mit Tücken (2023) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 481) [ClassicSimilarity], result of:
              0.008118451 = score(doc=481,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 481, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=481)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Corbara, S.; Moreo, A.; Sebastiani, F.: Syllabic quantity patterns as rhythmic features for Latin authorship attribution (2023) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 846) [ClassicSimilarity], result of:
              0.008118451 = score(doc=846,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 846, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=846)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so-called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic-agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.
    Type
    a
  20. Metz, C.: ¬The new chatbots could change the world : can you trust them? (2022) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 854) [ClassicSimilarity], result of:
              0.008118451 = score(doc=854,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=854)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

  • e 29
  • d 28

Types

  • el 25
  • p 1
  • More… Less…