Search (33 results, page 1 of 2)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  • × year_i:[2020 TO 2030}
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.20
    0.19989406 = product of:
      0.44976163 = sum of:
        0.062223002 = product of:
          0.186669 = sum of:
            0.186669 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.186669 = score(doc=862,freq=2.0), product of:
                0.3321406 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03917671 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.186669 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.186669 = score(doc=862,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.014200641 = weight(_text_:of in 862) [ClassicSimilarity], result of:
          0.014200641 = score(doc=862,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 862, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.186669 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.186669 = score(doc=862,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.44444445 = coord(4/9)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  2. Park, J.S.; O'Brien, J.C.; Cai, C.J.; Ringel Morris, M.; Liang, P.; Bernstein, M.S.: Generative agents : interactive simulacra of human behavior (2023) 0.03
    0.030003514 = product of:
      0.09001054 = sum of:
        0.041947264 = weight(_text_:applications in 972) [ClassicSimilarity], result of:
          0.041947264 = score(doc=972,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 972, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=972)
        0.0140020205 = weight(_text_:of in 972) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=972,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 972, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=972)
        0.034061253 = weight(_text_:software in 972) [ClassicSimilarity], result of:
          0.034061253 = score(doc=972,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 972, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=972)
      0.33333334 = coord(3/9)
    
    Abstract
    Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
  3. Al-Khatib, K.; Ghosa, T.; Hou, Y.; Waard, A. de; Freitag, D.: Argument mining for scholarly document processing : taking stock and looking ahead (2021) 0.02
    0.016343227 = product of:
      0.07354452 = sum of:
        0.05872617 = weight(_text_:applications in 568) [ClassicSimilarity], result of:
          0.05872617 = score(doc=568,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 568, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=568)
        0.014818345 = weight(_text_:of in 568) [ClassicSimilarity], result of:
          0.014818345 = score(doc=568,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 568, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=568)
      0.22222222 = coord(2/9)
    
    Abstract
    Argument mining targets structures in natural language related to interpretation and persuasion. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions, which could benefit from argument mining techniques. However, While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.
    Source
    Proceedings of the Second Workshop on Scholarly Document Processing,
  4. Zaitseva, E.M.: Developing linguistic tools of thematic search in library information systems (2023) 0.01
    0.014860872 = product of:
      0.06687392 = sum of:
        0.021169065 = weight(_text_:of in 1187) [ClassicSimilarity], result of:
          0.021169065 = score(doc=1187,freq=32.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 1187, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
        0.045704857 = weight(_text_:systems in 1187) [ClassicSimilarity], result of:
          0.045704857 = score(doc=1187,freq=10.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.37961838 = fieldWeight in 1187, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
      0.22222222 = coord(2/9)
    
    Abstract
    Within the R&D program "Information support of research by scientists and specialists on the basis of RNPLS&T Open Archive - the system of scientific knowledge aggregation", the RNPLS&T analyzes the use of linguistic tools of thematic search in the modern library information systems and the prospects for their development. The author defines the key common characteristics of e-catalogs of the largest Russian libraries revealed at the first stage of the analysis. Based on the specified common characteristics and detailed comparison analysis, the author outlines and substantiates the vectors for enhancing search inter faces of e-catalogs. The focus is made on linguistic tools of thematic search in library information systems; the key vectors are suggested: use of thematic search at different search levels with the clear-cut level differentiation; use of combined functionality within thematic search system; implementation of classification search in all e-catalogs; hierarchical representation of classifications; use of the matching systems for classification information retrieval languages, and in the long term classification and verbal information retrieval languages, and various verbal information retrieval languages. The author formulates practical recommendations to improve thematic search in library information systems.
  5. Escolano, C.; Costa-Jussà, M.R.; Fonollosa, J.A.: From bilingual to multilingual neural-based machine translation by incremental training (2021) 0.01
    0.009951797 = product of:
      0.044783086 = sum of:
        0.015876798 = weight(_text_:of in 97) [ClassicSimilarity], result of:
          0.015876798 = score(doc=97,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 97, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=97)
        0.02890629 = weight(_text_:systems in 97) [ClassicSimilarity], result of:
          0.02890629 = score(doc=97,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 97, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=97)
      0.22222222 = coord(2/9)
    
    Abstract
    A common intermediate language representation in neural machine translation can be used to extend bilingual systems by incremental training. We propose a new architecture based on introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we can train multiple encoders and decoders for each language, sharing among them a common intermediate representation. Translation results on the low-resource tasks (Turkish-English and Kazakh-English tasks) show a BLEU improvement of up to 2.8 points. However, results on a larger dataset (Russian-English and Kazakh-English) show BLEU losses of a similar amount. While our system provides improvements only for the low-resource tasks in terms of translation quality, our system is capable of quickly deploying new language pairs without the need to retrain the rest of the system, which may be a game changer in some situations. Specifically, what is most relevant regarding our architecture is that it is capable of: reducing the number of production systems, with respect to the number of languages, from quadratic to linear; incrementally adding a new language to the system without retraining the languages already there; and allowing for translations from the new language to all the others present in the system.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.2, S.190-203
  6. Collard, J.; Paiva, V. de; Fong, B.; Subrahmanian, E.: Extracting mathematical concepts from text (2022) 0.01
    0.009652025 = product of:
      0.043434113 = sum of:
        0.014818345 = weight(_text_:of in 668) [ClassicSimilarity], result of:
          0.014818345 = score(doc=668,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=668)
        0.028615767 = weight(_text_:systems in 668) [ClassicSimilarity], result of:
          0.028615767 = score(doc=668,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 668, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=668)
      0.22222222 = coord(2/9)
    
    Abstract
    We investigate different systems for extracting mathematical entities from English texts in the mathematical field of category theory as a first step for constructing a mathematical knowledge graph. We consider four different term extractors and compare their results. This small experiment showcases some of the issues with the construction and evaluation of terms extracted from noisy domain text. We also make available two open corpora in research mathematics, in particular in category theory: a small corpus of 755 abstracts from the journal TAC (3188 sentences), and a larger corpus from the nLab community wiki (15,000 sentences).
  7. Morris, V.: Automated language identification of bibliographic resources (2020) 0.01
    0.009327328 = product of:
      0.041972976 = sum of:
        0.020741362 = weight(_text_:of in 5749) [ClassicSimilarity], result of:
          0.020741362 = score(doc=5749,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 5749, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5749)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.042463228 = score(doc=5749,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
    Date
    2. 3.2020 19:04:22
  8. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.008687538 = product of:
      0.03909392 = sum of:
        0.010478153 = weight(_text_:of in 667) [ClassicSimilarity], result of:
          0.010478153 = score(doc=667,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 667, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
        0.028615767 = weight(_text_:systems in 667) [ClassicSimilarity], result of:
          0.028615767 = score(doc=667,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
      0.22222222 = coord(2/9)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
  9. Leighton, T.: ChatGPT und Künstliche Intelligenz : Utopie oder Dystopie? (2023) 0.01
    0.0075691673 = product of:
      0.068122506 = sum of:
        0.068122506 = weight(_text_:software in 908) [ClassicSimilarity], result of:
          0.068122506 = score(doc=908,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43831247 = fieldWeight in 908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=908)
      0.11111111 = coord(1/9)
    
    Abstract
    Das Tool wird immer ausgefeilter; es erstellt Software und erfindet die unglaublichsten Fiktionen. Wie "klug" ist es? Wie sieht es mit den Ängsten aus? Und mit Moral?
  10. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.01
    0.006294866 = product of:
      0.028326897 = sum of:
        0.011975031 = weight(_text_:of in 872) [ClassicSimilarity], result of:
          0.011975031 = score(doc=872,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 872, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=872)
        0.016351866 = weight(_text_:systems in 872) [ClassicSimilarity], result of:
          0.016351866 = score(doc=872,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 872, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=872)
      0.22222222 = coord(2/9)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
  11. ¬Der Student aus dem Computer (2023) 0.00
    0.004128369 = product of:
      0.037155323 = sum of:
        0.037155323 = product of:
          0.074310645 = sum of:
            0.074310645 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.074310645 = score(doc=1079,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    27. 1.2023 16:22:55
  12. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.00
    0.0023590683 = product of:
      0.021231614 = sum of:
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.042463228 = score(doc=835,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    29.12.2022 18:22:55
  13. Rieger, F.: Lügende Computer (2023) 0.00
    0.0023590683 = product of:
      0.021231614 = sum of:
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.042463228 = score(doc=912,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    16. 3.2023 19:22:55
  14. Lee, G.E.; Sun, A.: Understanding the stability of medical concept embeddings (2021) 0.00
    0.002277429 = product of:
      0.02049686 = sum of:
        0.02049686 = weight(_text_:of in 159) [ClassicSimilarity], result of:
          0.02049686 = score(doc=159,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33457235 = fieldWeight in 159, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=159)
      0.11111111 = coord(1/9)
    
    Abstract
    Frequency is one of the major factors for training quality word embeddings. Several studies have recently discussed the stability of word embeddings in general domain and suggested factors influencing the stability. In this work, we conduct a detailed analysis on the stability of concept embeddings in medical domain, particularly in relations with concept frequency. The analysis reveals the surprising high stability of low-frequency concepts: low-frequency (<100) concepts have the same high stability as high-frequency (>1,000) concepts. To develop a deeper understanding of this finding, we propose a new factor, the noisiness of context words, which influences the stability of medical concept embeddings regardless of high or low frequency. We evaluate the proposed factor by showing the linear correlation with the stability of medical concept embeddings. The correlations are clear and consistent with various groups of medical concepts. Based on the linear relations, we make suggestions on ways to adjust the noisiness of context words for the improvement of stability. Finally, we demonstrate that the linear relation of the proposed factor extends to the word embedding stability in general domain.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.3, S.346-356
  15. Shree, P.: ¬The journey of Open AI GPT models (2020) 0.00
    0.0022314154 = product of:
      0.020082738 = sum of:
        0.020082738 = weight(_text_:of in 869) [ClassicSimilarity], result of:
          0.020082738 = score(doc=869,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 869, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=869)
      0.11111111 = coord(1/9)
    
    Abstract
    Generative Pre-trained Transformer (GPT) models by OpenAI have taken natural language processing (NLP) community by storm by introducing very powerful language models. These models can perform various NLP tasks like question answering, textual entailment, text summarisation etc. without any supervised training. These language models need very few to no examples to understand the tasks and perform equivalent or even better than the state-of-the-art models trained in supervised fashion. In this article we will cover the journey of these models and understand how they have evolved over a period of 2 years. 1. Discussion of GPT-1 paper (Improving Language Understanding by Generative Pre-training). 2. Discussion of GPT-2 paper (Language Models are unsupervised multitask learners) and its subsequent improvements over GPT-1. 3. Discussion of GPT-3 paper (Language models are few shot learners) and the improvements which have made it one of the most powerful models NLP has seen till date. This article assumes familiarity with the basics of NLP terminologies and transformer architecture.
    Source
    https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
  16. Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022) 0.00
    0.0021780923 = product of:
      0.01960283 = sum of:
        0.01960283 = weight(_text_:of in 1139) [ClassicSimilarity], result of:
          0.01960283 = score(doc=1139,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 1139, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1139)
      0.11111111 = coord(1/9)
    
    Abstract
    In light of AI (Artificial Intelligence) and NLP (Natural language processing) technologies, this article examines the feasibility of using AI/NLP models to enhance the subject indexing of digital resources. While BERT (Bidirectional Encoder Representations from Transformers) models are widely used in scholarly communities, the authors assess whether BERT models can be used in machine-assisted indexing in the Project Gutenberg collection, through suggesting Library of Congress subject headings filtered by certain Library of Congress Classification subclass labels. The findings of this study are informative for further research on BERT models to assist with automatic subject indexing for digital library collections.
  17. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.00
    0.0021201707 = product of:
      0.019081537 = sum of:
        0.019081537 = weight(_text_:of in 103) [ClassicSimilarity], result of:
          0.019081537 = score(doc=103,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31146988 = fieldWeight in 103, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=103)
      0.11111111 = coord(1/9)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.
  18. Harari, Y.N.: ¬[Yuval-Noah-Harari-argues-that] AI has hacked the operating system of human civilisation (2023) 0.00
    0.0020369943 = product of:
      0.018332949 = sum of:
        0.018332949 = weight(_text_:of in 953) [ClassicSimilarity], result of:
          0.018332949 = score(doc=953,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 953, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=953)
      0.11111111 = coord(1/9)
    
    Abstract
    Storytelling computers will change the course of human history, says the historian and philosopher.
    Source
    https://www.economist.com/by-invitation/2023/04/28/yuval-noah-harari-argues-that-ai-has-hacked-the-operating-system-of-human-civilisation?giftId=6982bba3-94bc-441d-9153-6d42468817ad
  19. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.00
    0.0019958385 = product of:
      0.017962547 = sum of:
        0.017962547 = weight(_text_:of in 1205) [ClassicSimilarity], result of:
          0.017962547 = score(doc=1205,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 1205, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.11111111 = coord(1/9)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
    Source
    Journal of the Association for Information Science and Technology. 75(2023) no.2, S.167-187
  20. Xiang, R.; Chersoni, E.; Lu, Q.; Huang, C.-R.; Li, W.; Long, Y.: Lexical data augmentation for sentiment analysis (2021) 0.00
    0.0019502735 = product of:
      0.017552461 = sum of:
        0.017552461 = weight(_text_:of in 392) [ClassicSimilarity], result of:
          0.017552461 = score(doc=392,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 392, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=392)
      0.11111111 = coord(1/9)
    
    Abstract
    Machine learning methods, especially deep learning models, have achieved impressive performance in various natural language processing tasks including sentiment analysis. However, deep learning models are more demanding for training data. Data augmentation techniques are widely used to generate new instances based on modifications to existing data or relying on external knowledge bases to address annotated data scarcity, which hinders the full potential of machine learning techniques. This paper presents our work using part-of-speech (POS) focused lexical substitution for data augmentation (PLSDA) to enhance the performance of machine learning algorithms in sentiment analysis. We exploit POS information to identify words to be replaced and investigate different augmentation strategies to find semantically related substitutions when generating new instances. The choice of POS tags as well as a variety of strategies such as semantic-based substitution methods and sampling methods are discussed in detail. Performance evaluation focuses on the comparison between PLSDA and two previous lexical substitution-based data augmentation methods, one of which is thesaurus-based, and the other is lexicon manipulation based. Our approach is tested on five English sentiment analysis benchmarks: SST-2, MR, IMDB, Twitter, and AirRecord. Hyperparameters such as the candidate similarity threshold and number of newly generated instances are optimized. Results show that six classifiers (SVM, LSTM, BiLSTM-AT, bidirectional encoder representations from transformers [BERT], XLNet, and RoBERTa) trained with PLSDA achieve accuracy improvement of more than 0.6% comparing to two previous lexical substitution methods averaged on five benchmarks. Introducing POS constraint and well-designed augmentation strategies can improve the reliability of lexical data augmentation methods. Consequently, PLSDA significantly improves the performance of sentiment analysis algorithms.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.11, S.1432-1447

Languages

  • e 28
  • d 5

Types