Search (25 results, page 1 of 2)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.01383317 = product of:
      0.02766634 = sum of:
        0.02766634 = sum of:
          0.00270615 = weight(_text_:a in 4217) [ClassicSimilarity], result of:
            0.00270615 = score(doc=4217,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.050957955 = fieldWeight in 4217, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=4217)
          0.02496019 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
            0.02496019 = score(doc=4217,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 4217, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=4217)
      0.5 = coord(1/2)
    
    Date
    22. 1.2018 11:32:44
    Type
    a
  2. Lezius, W.: Morphy - Morphologie und Tagging für das Deutsche (2013) 0.01
    0.012480095 = product of:
      0.02496019 = sum of:
        0.02496019 = product of:
          0.04992038 = sum of:
            0.04992038 = weight(_text_:22 in 1490) [ClassicSimilarity], result of:
              0.04992038 = score(doc=1490,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.30952093 = fieldWeight in 1490, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1490)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2015 9:30:24
  3. Kiela, D.; Clark, S.: Detecting compositionality of multi-word expressions using nearest neighbours in vector space models (2013) 0.00
    0.0030255679 = product of:
      0.0060511357 = sum of:
        0.0060511357 = product of:
          0.012102271 = sum of:
            0.012102271 = weight(_text_:a in 1161) [ClassicSimilarity], result of:
              0.012102271 = score(doc=1161,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22789092 = fieldWeight in 1161, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1161)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel unsupervised approach to detecting the compositionality of multi-word expressions. We compute the compositionality of a phrase through substituting the constituent words with their "neighbours" in a semantic vector space and averaging over the distance between the original phrase and the substituted neighbour phrases. Several methods of obtaining neighbours are presented. The results are compared to existing supervised results and achieve state-of-the-art performance on a verb-object dataset of human compositionality ratings.
    Type
    a
  4. Biselli, A.: Unter Generalverdacht durch Algorithmen (2014) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 809) [ClassicSimilarity], result of:
              0.011481222 = score(doc=809,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 809, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=809)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Bedathur, S.; Narang, A.: Mind your language : effects of spoken query formulation on retrieval effectiveness (2013) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 1150) [ClassicSimilarity], result of:
              0.010589487 = score(doc=1150,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 1150, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1150)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Voice search is becoming a popular mode for interacting with search engines. As a result, research has gone into building better voice transcription engines, interfaces, and search engines that better handle inherent verbosity of queries. However, when one considers its use by non- native speakers of English, another aspect that becomes important is the formulation of the query by users. In this paper, we present the results of a preliminary study that we conducted with non-native English speakers who formulate queries for given retrieval tasks. Our results show that the current search engines are sensitive in their rankings to the query formulation, and thus highlights the need for developing more robust ranking methods.
    Type
    a
  6. Perovsek, M.; Kranjca, J.; Erjaveca, T.; Cestnika, B.; Lavraca, N.: TextFlows : a visual programming platform for text mining and natural language processing (2016) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2697) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2697,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2697, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Text mining and natural language processing are fast growing areas of research, with numerous applications in business, science and creative industries. This paper presents TextFlows, a web-based text mining and natural language processing platform supporting workflow construction, sharing and execution. The platform enables visual construction of text mining workflows through a web browser, and the execution of the constructed workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the construction and sharing of text processing workflows, which can be reused in various applications. The paper presents the implemented text mining and language processing modules, and describes some precomposed workflows. Their features are demonstrated on three use cases: comparison of document classifiers and of different part-of-speech taggers on a text categorization problem, and outlier detection in document corpora.
    Type
    a
  7. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N.: Generating Wikipedia by summarizing long sequences (2018) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 773) [ClassicSimilarity], result of:
              0.009471525 = score(doc=773,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 773, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=773)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We show that generating English Wikipedia articles can be approached as a multi-document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
    Type
    a
  8. Zadeh, B.Q.; Handschuh, S.: ¬The ACL RD-TEC : a dataset for benchmarking terminology extraction and classification in computational linguistics (2014) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2803) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2803,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2803, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2803)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper introduces ACL RD-TEC: a dataset for evaluating the extraction and classification of terms from literature in the domain of computational linguistics. The dataset is derived from the Association for Computational Linguistics anthology reference corpus (ACL ARC). In its first release, the ACL RD-TEC consists of automatically segmented, part-of-speech-tagged ACL ARC documents, three lists of candidate terms, and more than 82,000 manually annotated terms. The annotated terms are marked as either valid or invalid, and valid terms are further classified as technology and non-technology terms. Technology terms signify methods, algorithms, and solutions in computational linguistics. The paper describes the dataset and reports the relevant statistics. We hope the step described in this paper encourages a collaborative effort towards building a full-fledged annotated corpus from the computational linguistics literature.
    Type
    a
  9. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.: Attention Is all you need (2017) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 970) [ClassicSimilarity], result of:
              0.009076704 = score(doc=970,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 970, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=970)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
    Type
    a
  10. Stoykova, V.; Petkova, E.: Automatic extraction of mathematical terms for precalculus (2012) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 156) [ClassicSimilarity], result of:
              0.008202582 = score(doc=156,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 156, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=156)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this work, we present the results of research for evaluating a methodology for extracting mathematical terms for precalculus using the techniques for semantically-oriented statistical search. We use the corpus-based approach and the combination of different statistically-based techniques for extracting keywords, collocations and co-occurrences incorporated in the Sketch Engine software. We evaluate the collocations candidate terms for the basic concept function(s) and approve the related methodology by precalculus domain conceptual terms definitions. Finally, we offer a conceptual terms hierarchical representation and discuss the results with respect to their possible applications.
    Type
    a
  11. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 267) [ClassicSimilarity], result of:
              0.008202582 = score(doc=267,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 267, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Domain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is- part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.
    Type
    a
  12. Altmann, E.G.; Cristadoro, G.; Esposti, M.D.: On the origin of long-range correlations in texts (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 330) [ClassicSimilarity], result of:
              0.008118451 = score(doc=330,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 330, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=330)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.
    Type
    a
  13. Snajder, J.; Almic, P.: Modeling semantic compositionality of Croatian multiword expressions (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2920) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2920,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2920, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A distinguishing feature of many multiword expressions (MWEs) is their semantic non-compositionality. Determining the semantic compositionality of MWEs is important for many natural language processing tasks. We address the task of modeling semantic compositionality of Croatian MWEs. We adopt a composition-based approach within the distributional semantics framework. We build and evaluate models based on Latent Semantic Analysis and the recently proposed neural network-based Skip-gram model, and experiment with different composition functions. We show that the compositionality scores predicted by the Skip-gram additive models correlate well with human judgments (=0.50). When framed as a classification task, the model achieves an accuracy of 0.64.
    Content
    Vgl. unter: http://takelab.fer.hr/data/cromwesc/. The dataset is available from here: TakeLab-CroMWEsc.tar.gz. The archive contains one file, which contains a list of 200 Croatian multiword expressions annotated with semantic compositionality scores. Twenty expressions were annotated by 24 annotators (denoted by "*") and the rest of them were annotated by 6 annotators. Besides median, we provide mode, mean, and standard deviation for each expression. Consult the above mentioned paper for details.
  14. Voss, O.: Übersetzer überflüssig? : Sprachsoftware DeepL und Acrolinx (2019) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4981) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4981,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4981)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Nagy T., I.: Detecting multiword expressions and named entities in natural language texts (2014) 0.00
    0.0019633435 = product of:
      0.003926687 = sum of:
        0.003926687 = product of:
          0.007853374 = sum of:
            0.007853374 = weight(_text_:a in 1536) [ClassicSimilarity], result of:
              0.007853374 = score(doc=1536,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14788237 = fieldWeight in 1536, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1536)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multiword expressions (MWEs) are lexical items that can be decomposed into single words and display lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasy (Sag et al., 2002; Kim, 2008; Calzolari et al., 2002). The proper treatment of multiword expressions such as rock 'n' roll and make a decision is essential for many natural language processing (NLP) applications like information extraction and retrieval, terminology extraction and machine translation, and it is important to identify multiword expressions in context. For example, in machine translation we must know that MWEs form one semantic unit, hence their parts should not be translated separately. For this, multiword expressions should be identified first in the text to be translated. The chief aim of this thesis is to develop machine learning-based approaches for the automatic detection of different types of multiword expressions in English and Hungarian natural language texts. In our investigations, we pay attention to the characteristics of different types of multiword expressions such as nominal compounds, multiword named entities and light verb constructions, and we apply novel methods to identify MWEs in raw texts. In the thesis it will be demonstrated that nominal compounds and multiword amed entities may require a similar approach for their automatic detection as they behave in the same way from a linguistic point of view. Furthermore, it will be shown that the automatic detection of light verb constructions can be carried out using two effective machine learning-based approaches.
    In this thesis, we focused on the automatic detection of multiword expressions in natural language texts. On the basis of the main contributions, we can argue that: - Supervised machine learning methods can be successfully applied for the automatic detection of different types of multiword expressions in natural language texts. - Machine learning-based multiword expression detection can be successfully carried out for English as well as for Hungarian. - Our supervised machine learning-based model was successfully applied to the automatic detection of nominal compounds from English raw texts. - We developed a Wikipedia-based dictionary labeling method to automatically detect English nominal compounds. - A prior knowledge of nominal compounds can enhance Named Entity Recognition, while previously identified named entities can assist the nominal compound identification process. - The machine learning-based method can also provide acceptable results when it was trained on an automatically generated silver standard corpus. - As named entities form one semantic unit and may consist of more than one word and function as a noun, we can treat them in a similar way to nominal compounds. - Our sequence labelling-based tool can be successfully applied for identifying verbal light verb constructions in two typologically different languages, namely English and Hungarian. - Domain adaptation techniques may help diminish the distance between domains in the automatic detection of light verb constructions. - Our syntax-based method can be successfully applied for the full-coverage identification of light verb constructions. As a first step, a data-driven candidate extraction method can be utilized. After, a machine learning approach that makes use of an extended and rich feature set selects LVCs among extracted candidates. - When a precise syntactic parser is available for the actual domain, the full-coverage identification can be performed better. In other cases, the usage of the sequence labeling method is recommended.
  16. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2861) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2861,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2861, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
    Type
    a
  17. Spitkovsky, V.; Norvig, P.: From words to concepts and back : dictionaries for linking text, entities and ideas (2012) 0.00
    0.0017899501 = product of:
      0.0035799001 = sum of:
        0.0035799001 = product of:
          0.0071598003 = sum of:
            0.0071598003 = weight(_text_:a in 337) [ClassicSimilarity], result of:
              0.0071598003 = score(doc=337,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13482209 = fieldWeight in 337, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Human language is both rich and ambiguous. When we hear or read words, we resolve meanings to mental representations, for example recognizing and linking names to the intended persons, locations or organizations. Bridging words and meaning - from turning search queries into relevant results to suggesting targeted keywords for advertisers - is also Google's core competency, and important for many other tasks in information retrieval and natural language processing. We are happy to release a resource, spanning 7,560,141 concepts and 175,100,788 unique text strings, that we hope will help everyone working in these areas. How do we represent concepts? Our approach piggybacks on the unique titles of entries from an encyclopedia, which are mostly proper and common noun phrases. We consider each individual Wikipedia article as representing a concept (an entity or an idea), identified by its URL. Text strings that refer to concepts were collected using the publicly available hypertext of anchors (the text you click on in a web link) that point to each Wikipedia page, thus drawing on the vast link structure of the web. For every English article we harvested the strings associated with its incoming hyperlinks from the rest of Wikipedia, the greater web, and also anchors of parallel, non-English Wikipedia pages. Our dictionaries are cross-lingual, and any concept deemed too fine can be broadened to a desired level of generality using Wikipedia's groupings of articles into hierarchical categories. The data set contains triples, each consisting of (i) text, a short, raw natural language string; (ii) url, a related concept, represented by an English Wikipedia article's canonical location; and (iii) count, an integer indicating the number of times text has been observed connected with the concept's url. Our database thus includes weights that measure degrees of association. For example, the top two entries for football indicate that it is an ambiguous term, which is almost twice as likely to refer to what we in the US call soccer. Vgl. auch: Spitkovsky, V.I., A.X. Chang: A cross-lingual dictionary for english Wikipedia concepts. In: http://nlp.stanford.edu/pubs/crosswikis.pdf.
  18. Spitkovsky, V.I.; Chang, A.X.: ¬A cross-lingual dictionary for english Wikipedia concepts (2012) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 336) [ClassicSimilarity], result of:
              0.007030784 = score(doc=336,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 336, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=336)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a resource for automatically associating strings of text with English Wikipedia concepts. Our machinery is bi-directional, in the sense that it uses the same fundamental probabilistic methods to map strings to empirical distributions over Wikipedia articles as it does to map article URLs to distributions over short, language-independent strings of natural language text. For maximal interoperability, we release our resource as a set of ?at line-based text ?les, lexicographically sorted and encoded with UTF-8. These files capture joint probability distributions underlying concepts (we use the terms article, concept and Wikipedia URL interchangeably) and associated snippets of text, as well as other features that can come in handy when working with Wikipedia articles and related information.
  19. Wong, W.; Liu, W.; Bennamoun, M.: Ontology learning from text : a look back and into the future (2010) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 4733) [ClassicSimilarity], result of:
              0.00669738 = score(doc=4733,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 4733, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies are often viewed as the answer to the need for inter-operable semantics in modern information systems. The explosion of textual information on the "Read/Write" Web coupled with the increasing demand for ontologies to power the Semantic Web have made (semi-)automatic ontology learning from text a very promising research area. This together with the advanced state in related areas such as natural language processing have fuelled research into ontology learning over the past decade. This survey looks at how far we have come since the turn of the millennium, and discusses the remaining challenges that will define the research directions in this area in the near future.
  20. Holland, M.: Erstes wissenschaftliches Buch eines Algorithmus' veröffentlicht (2019) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 5227) [ClassicSimilarity], result of:
              0.00669738 = score(doc=5227,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 5227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5227)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Der Wissenschaftsverlag Springer Nature hat nach eigenen Angaben das erste Buch veröffentlicht, das von einem Algorithmus verfasst wurde. Bei Springer Nature ist das nach Angaben des Wissenschaftsverlags erste maschinengenerierte Buch erschienen: "Lithium-Ion Batteries - A Machine-Generated Summary of Current Research" biete einen Überblick über die neuesten Forschungspublikationen über Lithium-Ionen-Batterien, erklärte die Goethe-Universität Frankfurt am Main. Dort wurde im Bereich Angewandte Computerlinguistik unter der Leitung von Christian Chiarcos jenes Verfahren entwickelt, das Textinhalte automatisch analysiert und relevante Publikationen auswählen kann. Es heißt "Beta Writer" und steht als Autor über dem Buch.
    Type
    a