Search (67 results, page 2 of 4)

  • × theme_ss:"Computerlinguistik"
  • × year_i:[2020 TO 2030}
  1. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 851) [ClassicSimilarity], result of:
              0.008557598 = score(doc=851,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 851, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=851)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  2. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.00
    0.0021343792 = product of:
      0.0042687585 = sum of:
        0.0042687585 = product of:
          0.008537517 = sum of:
            0.008537517 = weight(_text_:a in 923) [ClassicSimilarity], result of:
              0.008537517 = score(doc=923,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16076508 = fieldWeight in 923, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=923)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "I still don't know what to think about GPT-4, the new large language model (LLM) from OpenAI. On the one hand it is a remarkable product that easily passes the Turing test. If you ask it questions, via the ChatGPT interface, GPT-4 can easily produce fluid sentences largely indistinguishable from those a person might write. But on the other hand, amid the exceptional levels of hype and anticipation, it's hard to know where GPT-4 and other LLMs truly fit in the larger project of making machines intelligent.
    They might appear intelligent, but LLMs are nothing of the sort. They don't understand the meanings of the words they are using, nor the concepts expressed within the sentences they create. When asked how to bring a cow back to life, earlier versions of ChatGPT, for example, which ran on a souped-up version of GPT-3, would confidently provide a list of instructions. So-called hallucinations like this happen because language models have no concept of what a "cow" is or that "death" is a non-reversible state of being. LLMs do not have minds that can think about objects in the world and how they relate to each other. All they "know" is how likely it is that some sets of words will follow other sets of words, having calculated those probabilities from their training data. To make sense of all this, I spoke with Gary Marcus, an emeritus professor of psychology and neural science at New York University, for "Babbage", our science and technology podcast. Last year, as the world was transfixed by the sudden appearance of ChatGPT, he made some fascinating predictions about GPT-4.
    He doesn't dismiss the potential of LLMs to become useful assistants in all sorts of ways-Google and Microsoft have already announced that they will be integrating LLMs into their search and office productivity software. But he talked me through some of his criticisms of the technology's apparent capabilities. At the heart of Dr Marcus's thoughtful critique is an attempt to put LLMs into proper context. Deep learning, the underlying technology that makes LLMs work, is only one piece of the puzzle in the quest for machine intelligence. To reach the level of artificial general intelligence (AGI) that many tech companies strive for-i.e. machines that can plan, reason and solve problems in the way human brains can-they will need to deploy a suite of other AI techniques. These include, for example, the kind of "symbolic AI" that was popular before artificial neural networks and deep learning became all the rage.
    People use symbols to think about the world: if I say the words "cat", "house" or "aeroplane", you know instantly what I mean. Symbols can also be used to describe the way things are behaving (running, falling, flying) or they can represent how things should behave in relation to each other (a "+" means add the numbers before and after). Symbolic AI is a way to embed this human knowledge and reasoning into computer systems. Though the idea has been around for decades, it fell by the wayside a few years ago as deep learning-buoyed by the sudden easy availability of lots of training data and cheap computing power-became more fashionable. In the near future at least, there's no doubt people will find LLMs useful. But whether they represent a critical step on the path towards AGI, or rather just an intriguing detour, remains to be seen."
  3. Suissa, O.; Elmalech, A.; Zhitomirsky-Geffet, M.: Text analysis using deep neural networks in digital humanities and information science (2022) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 491) [ClassicSimilarity], result of:
              0.008285859 = score(doc=491,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 491, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=491)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Combining computational technologies and humanities is an ongoing effort aimed at making resources such as texts, images, audio, video, and other artifacts digitally available, searchable, and analyzable. In recent years, deep neural networks (DNN) dominate the field of automatic text analysis and natural language processing (NLP), in some cases presenting a super-human performance. DNNs are the state-of-the-art machine learning algorithms solving many NLP tasks that are relevant for Digital Humanities (DH) research, such as spell checking, language detection, entity extraction, author detection, question answering, and other tasks. These supervised algorithms learn patterns from a large number of "right" and "wrong" examples and apply them to new examples. However, using DNNs for analyzing the text resources in DH research presents two main challenges: (un)availability of training data and a need for domain adaptation. This paper explores these challenges by analyzing multiple use-cases of DH studies in recent literature and their possible solutions and lays out a practical decision model for DH experts for when and how to choose the appropriate deep learning approaches for their research. Moreover, in this paper, we aim to raise awareness of the benefits of utilizing deep learning models in the DH community.
    Type
    a
  4. Park, J.S.; O'Brien, J.C.; Cai, C.J.; Ringel Morris, M.; Liang, P.; Bernstein, M.S.: Generative agents : interactive simulacra of human behavior (2023) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 972) [ClassicSimilarity], result of:
              0.008285859 = score(doc=972,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 972, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=972)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
    Type
    a
  5. Al-Khatib, K.; Ghosa, T.; Hou, Y.; Waard, A. de; Freitag, D.: Argument mining for scholarly document processing : taking stock and looking ahead (2021) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 568) [ClassicSimilarity], result of:
              0.008202582 = score(doc=568,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 568, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=568)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Argument mining targets structures in natural language related to interpretation and persuasion. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions, which could benefit from argument mining techniques. However, While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.
    Type
    a
  6. Müller, P.: Text-Automat mit Tücken (2023) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 481) [ClassicSimilarity], result of:
              0.008118451 = score(doc=481,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 481, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=481)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Corbara, S.; Moreo, A.; Sebastiani, F.: Syllabic quantity patterns as rhythmic features for Latin authorship attribution (2023) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 846) [ClassicSimilarity], result of:
              0.008118451 = score(doc=846,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 846, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=846)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so-called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic-agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.
    Type
    a
  8. Metz, C.: ¬The new chatbots could change the world : can you trust them? (2022) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 854) [ClassicSimilarity], result of:
              0.008118451 = score(doc=854,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=854)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Schneider, R.U.: Darf der Computer die Seminararbeit schreiben? (2023) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1168) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1168,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1168)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Azpiazu, I.M.; Soledad Pera, M.: Is cross-lingual readability assessment possible? (2020) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 5868) [ClassicSimilarity], result of:
              0.007654148 = score(doc=5868,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 5868, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5868)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Most research efforts related to automatic readability assessment focus on the design of strategies that apply to a specific language. These state-of-the-art strategies are highly dependent on linguistic features that best suit the language for which they were intended, constraining their adaptability and making it difficult to determine whether they would remain effective if they were applied to estimate the level of difficulty of texts in other languages. In this article, we present the results of a study designed to determine the feasibility of a cross-lingual readability assessment strategy. For doing so, we first analyzed the most common features used for readability assessment and determined their influence on the readability prediction process of 6 different languages: English, Spanish, Basque, Italian, French, and Catalan. In addition, we developed a cross-lingual readability assessment strategy that serves as a means to empirically explore the potential advantages of employing a single strategy (and set of features) for readability assessment in different languages, including interlanguage prediction agreement and prediction accuracy improvement for low-resource languages.Friend request acceptance and information disclosure constitute 2 important privacy decisions for users to control the flow of their personal information in social network sites (SNSs). These decisions are greatly influenced by contextual characteristics of the request. However, the contextual influence may not be uniform among users with different levels of privacy concerns. In this study, we hypothesize that users with higher privacy concerns may consider contextual factors differently from those with lower privacy concerns. By conducting a scenario-based survey study and structural equation modeling, we verify the interaction effects between privacy concerns and contextual factors. We additionally find that users' perceived risk towards the requester mediates the effect of context and privacy concerns. These results extend our understanding about the cognitive process behind privacy decision making in SNSs. The interaction effects suggest strategies for SNS providers to predict user's friend request acceptance and to customize context-aware privacy decision support based on users' different privacy attitudes.
    Type
    a
  11. Lee, G.E.; Sun, A.: Understanding the stability of medical concept embeddings (2021) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 159) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=159,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 159, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=159)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Frequency is one of the major factors for training quality word embeddings. Several studies have recently discussed the stability of word embeddings in general domain and suggested factors influencing the stability. In this work, we conduct a detailed analysis on the stability of concept embeddings in medical domain, particularly in relations with concept frequency. The analysis reveals the surprising high stability of low-frequency concepts: low-frequency (<100) concepts have the same high stability as high-frequency (>1,000) concepts. To develop a deeper understanding of this finding, we propose a new factor, the noisiness of context words, which influences the stability of medical concept embeddings regardless of high or low frequency. We evaluate the proposed factor by showing the linear correlation with the stability of medical concept embeddings. The correlations are clear and consistent with various groups of medical concepts. Based on the linear relations, we make suggestions on ways to adjust the noisiness of context words for the improvement of stability. Finally, we demonstrate that the linear relation of the proposed factor extends to the word embedding stability in general domain.
    Type
    a
  12. Andrushchenko, M.; Sandberg, K.; Turunen, R.; Marjanen, J.; Hatavara, M.; Kurunmäki, J.; Nummenmaa, T.; Hyvärinen, M.; Teräs, K.; Peltonen, J.; Nummenmaa, J.: Using parsed and annotated corpora to analyze parliamentarians' talk in Finland (2022) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 471) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=471,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 471, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a search system for grammatically analyzed corpora of Finnish parliamentary records and interviews with former parliamentarians, annotated with metadata of talk structure and involved parliamentarians, and discuss their use through carefully chosen digital humanities case studies. We first introduce the construction, contents, and principles of use of the corpora. Then we discuss the application of the search system and the corpora to study how politicians talk about power, how ideological terms are used in political speech, and how to identify narratives in the data. All case studies stem from questions in the humanities and the social sciences, but rely on the grammatically parsed corpora in both identifying and quantifying passages of interest. Finally, the paper discusses the role of natural language processing methods for questions in the (digital) humanities. It makes the claim that a digital humanities inquiry of parliamentary speech and interviews with politicians cannot only rely on computational humanities modeling, but needs to accommodate a range of perspectives starting with simple searches, quantitative exploration, and ending with modeling. Furthermore, the digital humanities need a more thorough discussion about how the utilization of tools from information science and technologies alter the research questions posed in the humanities.
    Type
    a
  13. Ali, C.B.; Haddad, H.; Slimani, Y.: Multi-word terms selection for information retrieval (2022) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 900) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=900,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 900, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=900)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose A number of approaches and algorithms have been proposed over the years as a basis for automatic indexing. Many of these approaches suffer from precision inefficiency at low recall. The choice of indexing units has a great impact on search system effectiveness. The authors dive beyond simple terms indexing to propose a framework for multi-word terms (MWT) filtering and indexing. Design/methodology/approach In this paper, the authors rely on ranking MWT to filter them, keeping the most effective ones for the indexing process. The proposed model is based on filtering MWT according to their ability to capture the document topic and distinguish between different documents from the same collection. The authors rely on the hypothesis that the best MWT are those that achieve the greatest association degree. The experiments are carried out with English and French languages data sets. Findings The results indicate that this approach achieved precision enhancements at low recall, and it performed better than more advanced models based on terms dependencies. Originality/value Using and testing different association measures to select MWT that best describe the documents to enhance the precision in the first retrieved documents.
    Type
    a
  14. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1205) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1205,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1205, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
    Type
    a
  15. Zhang, Y.; Zhang, C.; Li, J.: Joint modeling of characters, words, and conversation contexts for microblog keyphrase extraction (2020) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5816) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5816,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5816, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5816)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Millions of messages are produced on microblog platforms every day, leading to the pressing need for automatic identification of key points from the massive texts. To absorb salient content from the vast bulk of microblog posts, this article focuses on the task of microblog keyphrase extraction. In previous work, most efforts treat messages as independent documents and might suffer from the data sparsity problem exhibited in short and informal microblog posts. On the contrary, we propose to enrich contexts via exploiting conversations initialized by target posts and formed by their replies, which are generally centered around relevant topics to the target posts and therefore helpful for keyphrase identification. Concretely, we present a neural keyphrase extraction framework, which has 2 modules: a conversation context encoder and a keyphrase tagger. The conversation context encoder captures indicative representation from their conversation contexts and feeds the representation into the keyphrase tagger, and the keyphrase tagger extracts salient words from target posts. The 2 modules were trained jointly to optimize the conversation context encoding and keyphrase extraction processes. In the conversation context encoder, we leverage hierarchical structures to capture the word-level indicative representation and message-level indicative representation hierarchically. In both of the modules, we apply character-level representations, which enables the model to explore morphological features and deal with the out-of-vocabulary problem caused by the informal language style of microblog messages. Extensive comparison results on real-life data sets indicate that our model outperforms state-of-the-art models from previous studies.
    Type
    a
  16. Simanowski, R.: Wenn die Dinge anfangen zu sprechen : Chatbot LaMDA von Google (2022) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 864) [ClassicSimilarity], result of:
              0.006765375 = score(doc=864,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 864, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=864)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Leighton, T.: ChatGPT und Künstliche Intelligenz : Utopie oder Dystopie? (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 908) [ClassicSimilarity], result of:
              0.006765375 = score(doc=908,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Barthel, J.; Ciesielski, R.: Regeln zu ChatGPT an Unis oft unklar : KI in der Bildung (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 925) [ClassicSimilarity], result of:
              0.006765375 = score(doc=925,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 925, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Janssen, J.-K.: ChatGPT-Klon läuft lokal auf jedem Rechner : Alpaca/LLaMA ausprobiert (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 927) [ClassicSimilarity], result of:
              0.006765375 = score(doc=927,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 927, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=927)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Lutz-Westphal, B.: ChatGPT und der "Faktor Mensch" im schulischen Mathematikunterricht (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 930) [ClassicSimilarity], result of:
              0.006765375 = score(doc=930,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 930, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=930)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

  • e 38
  • d 29

Types

  • a 57
  • el 33
  • p 7
  • x 1
  • More… Less…