Search (48 results, page 1 of 3)

  • × theme_ss:"Data Mining"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Haravu, L.J.; Neelameghan, A.: Text mining and data mining in knowledge organization and discovery : the making of knowledge-based products (2003) 0.04
    0.036399566 = product of:
      0.10919869 = sum of:
        0.041947264 = weight(_text_:applications in 5653) [ClassicSimilarity], result of:
          0.041947264 = score(doc=5653,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 5653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
        0.019081537 = weight(_text_:of in 5653) [ClassicSimilarity], result of:
          0.019081537 = score(doc=5653,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31146988 = fieldWeight in 5653, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
        0.048169892 = weight(_text_:software in 5653) [ClassicSimilarity], result of:
          0.048169892 = score(doc=5653,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30993375 = fieldWeight in 5653, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses the importance of knowledge organization in the context of the information overload caused by the vast quantities of data and information accessible on internal and external networks of an organization. Defines the characteristics of a knowledge-based product. Elaborates on the techniques and applications of text mining in developing knowledge products. Presents two approaches, as case studies, to the making of knowledge products: (1) steps and processes in the planning, designing and development of a composite multilingual multimedia CD product, with the potential international, inter-cultural end users in view, and (2) application of natural language processing software in text mining. Using a text mining software, it is possible to link concept terms from a processed text to a related thesaurus, glossary, schedules of a classification scheme, and facet structured subject representations. Concludes that the products of text mining and data mining could be made more useful if the features of a faceted scheme for subject classification are incorporated into text mining techniques and products.
  2. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.02
    0.01981098 = product of:
      0.08914941 = sum of:
        0.07118686 = weight(_text_:applications in 4242) [ClassicSimilarity], result of:
          0.07118686 = score(doc=4242,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.41273528 = fieldWeight in 4242, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
        0.017962547 = weight(_text_:of in 4242) [ClassicSimilarity], result of:
          0.017962547 = score(doc=4242,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 4242, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
      0.22222222 = coord(2/9)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
    Source
    Annual review of information science and technology. 38(2004), S.289-330
  3. Kulathuramaiyer, N.; Maurer, H.: Implications of emerging data mining (2009) 0.02
    0.015177614 = product of:
      0.06829926 = sum of:
        0.050336715 = weight(_text_:applications in 3144) [ClassicSimilarity], result of:
          0.050336715 = score(doc=3144,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 3144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=3144)
        0.017962547 = weight(_text_:of in 3144) [ClassicSimilarity], result of:
          0.017962547 = score(doc=3144,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 3144, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3144)
      0.22222222 = coord(2/9)
    
    Abstract
    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the 'master miners' allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
  4. Fenstermacher, K.D.; Ginsburg, M.: Client-side monitoring for Web mining (2003) 0.01
    0.014008479 = product of:
      0.063038155 = sum of:
        0.050336715 = weight(_text_:applications in 1611) [ClassicSimilarity], result of:
          0.050336715 = score(doc=1611,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 1611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=1611)
        0.012701439 = weight(_text_:of in 1611) [ClassicSimilarity], result of:
          0.012701439 = score(doc=1611,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 1611, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1611)
      0.22222222 = coord(2/9)
    
    Abstract
    "Garbage in, garbage out" is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user's actions ever reaches the Web server, analysts must rely an incomplete data. In this paper, we propose a client-side monitoring system that is unobtrusive and supports flexible data collection. Moreover, the proposed framework encompasses client-side applications beyond the Web browser. Expanding monitoring beyond the browser to incorporate standard office productivity tools enables analysts to derive a much richer and more accurate picture of user behavior an the Web.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.7, S.625-637
  5. Lischka, K.: Spurensuche im Datenwust : Data-Mining-Software fahndet nach kriminellen Mitarbeitern, guten Kunden - und bald vielleicht auch nach Terroristen (2002) 0.01
    0.013784983 = product of:
      0.062032424 = sum of:
        0.05407057 = weight(_text_:software in 1178) [ClassicSimilarity], result of:
          0.05407057 = score(doc=1178,freq=14.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.34789976 = fieldWeight in 1178, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1178)
        0.007961854 = product of:
          0.015923709 = sum of:
            0.015923709 = weight(_text_:22 in 1178) [ClassicSimilarity], result of:
              0.015923709 = score(doc=1178,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.116070345 = fieldWeight in 1178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1178)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    US-Behörden wollen mit spezieller Software die Datenspuren von Terroristen finden. Wie das funktionieren könnte, zeigen Programmen, die heute schon für Unternehmen Kunden und Mitarbeiter analysieren.
    Content
    "Ob man als Terrorist einen Anschlag gegen die Vereinigten Staaten plant, als Kassierer Scheine aus der Kasse unterschlägt oder für bestimmte Produkte besonders gerne Geld ausgibt - einen Unterschied macht Data-Mining-Software da nicht. Solche Programme analysieren riesige Daten- mengen und fällen statistische Urteile. Mit diesen Methoden wollen nun die For- scher des "Information Awaren in den Vereinigten Staaten Spuren von Terroristen in den Datenbanken von Behörden und privaten Unternehmen wie Kreditkartenfirmen finden. 200 Millionen Dollar umfasst der Jahresetat für die verschiedenen Forschungsprojekte. Dass solche Software in der Praxis funktioniert, zeigen die steigenden Umsätze der Anbieter so genannter Customer-Relationship-Management-Software. Im vergangenen Jahr ist das Potenzial für analytische CRM-Anwendungen laut dem Marktforschungsinstitut IDC weltweit um 22 Prozent gewachsen, bis zum Jahr 2006 soll es in Deutschland mit einem jährlichen Plus von 14,1 Prozent so weitergehen. Und das trotz schwacher Konjunktur - oder gerade deswegen. Denn ähnlich wie Data-Mining der USRegierung helfen soll, Terroristen zu finden, entscheiden CRM-Programme heute, welche Kunden für eine Firma profitabel sind. Und welche es künftig sein werden, wie Manuela Schnaubelt, Sprecherin des CRM-Anbieters SAP, beschreibt: "Die Kundenbewertung ist ein zentraler Bestandteil des analytischen CRM. Sie ermöglicht es Unternehmen, sich auf die für sie wichtigen und richtigen Kunden zu fokussieren. Darüber hinaus können Firmen mit speziellen Scoring- Verfahren ermitteln, welche Kunden langfristig in welchem Maße zum Unternehmenserfolg beitragen." Die Folgen der Bewertungen sind für die Betroffenen nicht immer positiv: Attraktive Kunden profitieren von individuellen Sonderangeboten und besonderer Zuwendung. Andere hängen vielleicht so lauge in der Warteschleife des Telefonservice, bis die profitableren Kunden abgearbeitet sind. So könnte eine praktische Umsetzung dessen aussehen, was SAP-Spreche-rin Schnaubelt abstrakt beschreibt: "In vielen Unternehmen wird Kundenbewertung mit der klassischen ABC-Analyse durchgeführt, bei der Kunden anhand von Daten wie dem Umsatz kategorisiert werden. A-Kunden als besonders wichtige Kunden werden anders betreut als C-Kunden." Noch näher am geplanten Einsatz von Data-Mining zur Terroristenjagd ist eine Anwendung, die heute viele Firmen erfolgreich nutzen: Sie spüren betrügende Mitarbeiter auf. Werner Sülzer vom großen CRM-Anbieter NCR Teradata beschreibt die Möglichkeiten so: "Heute hinterlässt praktisch jeder Täter - ob Mitarbeiter, Kunde oder Lieferant - Datenspuren bei seinen wirtschaftskriminellen Handlungen. Es muss vorrangig darum gehen, einzelne Spuren zu Handlungsmustern und Täterprofilen zu verdichten. Das gelingt mittels zentraler Datenlager und hoch entwickelter Such- und Analyseinstrumente." Von konkreten Erfolgen sprich: Entlas-sungen krimineller Mitarbeiter-nach Einsatz solcher Programme erzählen Unternehmen nicht gerne. Matthias Wilke von der "Beratungsstelle für Technologiefolgen und Qualifizierung" (BTQ) der Gewerkschaft Verdi weiß von einem Fall 'aus der Schweiz. Dort setzt die Handelskette "Pick Pay" das Programm "Lord Lose Prevention" ein. Zwei Monate nach Einfüh-rung seien Unterschlagungen im Wert von etwa 200 000 Franken ermittelt worden. Das kostete mehr als 50 verdächtige Kassiererinnen und Kassierer den Job.
    Jede Kasse schickt die Daten zu Stornos, Rückgaben, Korrekturen und dergleichen an eine zentrale Datenbank. Aus den Informationen errechnet das Programm Kassiererprofile. Wessen Arbeit stark Durchschnitt abweicht, macht sich verdächtig. Die Kriterien" legen im Einzelnen die Revisionsabteilungen fest, doch generell gilt: "Bei Auffälligkeiten wie überdurchschnittlichvielenStornierungen, Off nen der Kassenschublade ohne Verkauf nach einem Storno oder Warenrücknahmen ohne Kassenbon, können die Vorgänge nachträglich einzelnen Personen zugeordnet werden", sagt Rene Schiller, Marketing-Chef des Lord-Herstellers Logware. Ein Kündigungsgrund ist eine solche Datensammlung vor Gericht nicht. Doch auf der Basis können Unternehmen gezielt Detektive einsetzen. Oder sie konfrontieren die Mitarbeiter mit dem Material; woraufhin Schuldige meist gestehen. Wilke sieht Programme wie Lord kritisch:"Jeder, der in dem Raster auffällt, kann ein potenzieller Betrüger oder Dieb sein und verdient besondere Beobachtung." Dabei könne man vom Standard abweichen, weil man unausgeschlafen und deshalb unkonzentriert sei. Hier tut sich für Wilke die Gefahr technisierter Leistungskontrolle auf. "Es ist ja nicht schwierig, mit den Programmen zu berechnen, wie lange beispielsweise das Kassieren eines Samstagseinkaufs durchschnittlich dauert." Die Betriebsräte - ihre Zustimmung ist beim Einsatz technischer Kon trolleinrichtungen nötig - verurteilen die wertende Software weniger eindeutig. Im Gegenteil: Bei Kaufhof und Edeka haben sie dem Einsatz zugestimmt. Denn: "Die wollen ja nicht, dass ganze Abteilungen wegen Inventurverlusten oder dergleichen unter Generalverdacht fallen", erklärt Gewerkschaftler Wilke: "Angesichts der Leistungen kommerzieller Data-Mining-Programme verblüfft es, dass in den Vereinigten Staaten das "Information Awareness Office" noch drei Jahre für Forschung und Erprobung der eigenen Programme veranschlagt. 2005 sollen frühe Prototypen zur Terroristensuche einesgetz werden. Doch schon jetzt regt sich Protest. Datenschützer wie Marc Botenberg vom Informationszentrum für Daten schutz sprechen vom "ehrgeizigsten öffentlichen Überwachungssystem, das je vorgeschlagen wurde". Sie warnen besonders davor, Daten aus der Internetnutzung und private Mails auszuwerten. Das Verteidigungsministerium rudert zurück. Man denke nicht daran, über die Software im Inland aktiv zu werden. "Das werden die Geheimdienste, die Spionageabwehr und die Strafverfolger tun", sagt Unterstaatssekretär Edward Aldridge. Man werde während der Entwicklung und der Tests mit konstruierten und einigen - aus Sicht der Datenschützer unbedenklichen - realen Informationen arbeiten. Zu denken gibt jedoch Aldriges Antwort auf die Frage, warum so viel Geld für die Entwicklung von Übersetzungssoftware eingeplant ist: Damit man Datenbanken in anderen Sprachen nutzen könne - sofern man auf sie rechtmäßigen Zugriff bekommt."
  6. Gluck , M.: Multimedia exploratory data analysis for geospatial data mining : the case for augmented seriation (2001) 0.01
    0.012816873 = product of:
      0.057675928 = sum of:
        0.016802425 = weight(_text_:of in 5214) [ClassicSimilarity], result of:
          0.016802425 = score(doc=5214,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 5214, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5214)
        0.040873505 = weight(_text_:software in 5214) [ClassicSimilarity], result of:
          0.040873505 = score(doc=5214,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 5214, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=5214)
      0.22222222 = coord(2/9)
    
    Abstract
    To prevent type-one error, statisticians tend to accept the possibility of type-two error, which leads to the rejection of hypotheses later shown to be true. In both Exploratory Data Analysis and data mining the emphasis is more appropriately on the elimination of type-two error. Thus EDA methods, including its visualization tools may be appropriate for Data Mining. Seriation, creates a matrix of observations and variables, where the cells contain an icon whose size represents its value, and permits the movement of rows and columns in order to visually discern patterns. Augmented Seriation, a method of data mining, adds computer graphics, sound, color, and extra dimensions to the matrix so that the analyst has different modalities for pattern observation. Gluck has developed software for such analysis.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.8, S.686-696
  7. Peters, G.; Gaese, V.: ¬Das DocCat-System in der Textdokumentation von G+J (2003) 0.01
    0.010985063 = product of:
      0.03295519 = sum of:
        0.0059875157 = weight(_text_:of in 1507) [ClassicSimilarity], result of:
          0.0059875157 = score(doc=1507,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.09773483 = fieldWeight in 1507, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1507)
        0.016351866 = weight(_text_:systems in 1507) [ClassicSimilarity], result of:
          0.016351866 = score(doc=1507,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 1507, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=1507)
        0.010615807 = product of:
          0.021231614 = sum of:
            0.021231614 = weight(_text_:22 in 1507) [ClassicSimilarity], result of:
              0.021231614 = score(doc=1507,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.15476047 = fieldWeight in 1507, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1507)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Wir werden einmal die Grundlagen des Text-Mining-Systems bei IBM darstellen, dann werden wir das Projekt etwas umfangreicher und deutlicher darstellen, da kennen wir uns aus. Von daher haben wir zwei Teile, einmal Heidelberg, einmal Hamburg. Noch einmal zur Technologie. Text-Mining ist eine von IBM entwickelte Technologie, die in einer besonderen Ausformung und Programmierung für uns zusammengestellt wurde. Das Projekt hieß bei uns lange Zeit DocText Miner und heißt seit einiger Zeit auf Vorschlag von IBM DocCat, das soll eine Abkürzung für Document-Categoriser sein, sie ist ja auch nett und anschaulich. Wir fangen an mit Text-Mining, das bei IBM in Heidelberg entwickelt wurde. Die verstehen darunter das automatische Indexieren als eine Instanz, also einen Teil von Text-Mining. Probleme werden dabei gezeigt, und das Text-Mining ist eben eine Methode zur Strukturierung von und der Suche in großen Dokumentenmengen, die Extraktion von Informationen und, das ist der hohe Anspruch, von impliziten Zusammenhängen. Das letztere sei dahingestellt. IBM macht das quantitativ, empirisch, approximativ und schnell. das muss man wirklich sagen. Das Ziel, und das ist ganz wichtig für unser Projekt gewesen, ist nicht, den Text zu verstehen, sondern das Ergebnis dieser Verfahren ist, was sie auf Neudeutsch a bundle of words, a bag of words nennen, also eine Menge von bedeutungstragenden Begriffen aus einem Text zu extrahieren, aufgrund von Algorithmen, also im Wesentlichen aufgrund von Rechenoperationen. Es gibt eine ganze Menge von linguistischen Vorstudien, ein wenig Linguistik ist auch dabei, aber nicht die Grundlage der ganzen Geschichte. Was sie für uns gemacht haben, ist also die Annotierung von Pressetexten für unsere Pressedatenbank. Für diejenigen, die es noch nicht kennen: Gruner + Jahr führt eine Textdokumentation, die eine Datenbank führt, seit Anfang der 70er Jahre, da sind z.Z. etwa 6,5 Millionen Dokumente darin, davon etwas über 1 Million Volltexte ab 1993. Das Prinzip war lange Zeit, dass wir die Dokumente, die in der Datenbank gespeichert waren und sind, verschlagworten und dieses Prinzip haben wir auch dann, als der Volltext eingeführt wurde, in abgespeckter Form weitergeführt. Zu diesen 6,5 Millionen Dokumenten gehören dann eben auch ungefähr 10 Millionen Faksimileseiten, weil wir die Faksimiles auch noch standardmäßig aufheben.
    Date
    22. 4.2003 11:45:36
  8. Srinivasan, P.: Text mining in biomedicine : challenges and opportunities (2006) 0.01
    0.010864041 = product of:
      0.048888184 = sum of:
        0.014200641 = weight(_text_:of in 1497) [ClassicSimilarity], result of:
          0.014200641 = score(doc=1497,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 1497, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1497)
        0.034687545 = weight(_text_:systems in 1497) [ClassicSimilarity], result of:
          0.034687545 = score(doc=1497,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 1497, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1497)
      0.22222222 = coord(2/9)
    
    Abstract
    Text mining is about making serendipity more likely. Serendipity, the chance discovery of interesting ideas, has been responsible for many discoveries in science. Text mining systems strive to explore large text collections, separate the potentially meaningfull connections from a vast and mostly noisy background of random associations. In this paper we provide a summary of our text mining approach and also illustrate briefly some of the experiments we have conducted with this approach. In particular we use a profile-based text mining method. We have used these profiles to explore the global distribution of disease research, replicate discoveries made by others and propose new hypotheses. Text mining holds much potential that has yet to be tapped.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
  9. Wu, T.; Pottenger, W.M.: ¬A semi-supervised active learning algorithm for information extraction from textual data (2005) 0.01
    0.010324167 = product of:
      0.04645875 = sum of:
        0.017552461 = weight(_text_:of in 3237) [ClassicSimilarity], result of:
          0.017552461 = score(doc=3237,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 3237, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3237)
        0.02890629 = weight(_text_:systems in 3237) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3237,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3237, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3237)
      0.22222222 = coord(2/9)
    
    Abstract
    In this article we present a semi-supervised active learning algorithm for pattern discovery in information extraction from textual data. The patterns are reduced regular expressions composed of various characteristics of features useful in information extraction. Our major contribution is a semi-supervised learning algorithm that extracts information from a set of examples labeled as relevant or irrelevant to a given attribute. The approach is semi-supervised because it does not require precise labeling of the exact location of features in the training data. This significantly reduces the effort needed to develop a training set. An active learning algorithm is used to assist the semi-supervised learning algorithm to further reduce the training set development effort. The active learning algorithm is seeded with a Single positive example of a given attribute. The context of the seed is used to automatically identify candidates for additional positive examples of the given attribute. Candidate examples are manually pruned during the active learning phase, and our semi-supervised learning algorithm automatically discovers reduced regular expressions for each attribute. We have successfully applied this learning technique in the extraction of textual features from police incident reports, university crime reports, and patents. The performance of our algorithm compares favorably with competitive extraction systems being used in criminal justice information systems.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.3, S.258-271
  10. Li, J.; Zhang, P.; Cao, J.: External concept support for group support systems through Web mining (2009) 0.01
    0.010152737 = product of:
      0.045687314 = sum of:
        0.010999769 = weight(_text_:of in 2806) [ClassicSimilarity], result of:
          0.010999769 = score(doc=2806,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 2806, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2806)
        0.034687545 = weight(_text_:systems in 2806) [ClassicSimilarity], result of:
          0.034687545 = score(doc=2806,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 2806, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2806)
      0.22222222 = coord(2/9)
    
    Abstract
    External information plays an important role in group decision-making processes, yet research about external information support for Group Support Systems (GSS) has been lacking. In this study, we propose an approach to build a concept space to provide external concept support for GSS users. Built on a Web mining algorithm, the approach can mine a concept space from the Web and retrieve related concepts from the concept space based on users' comments in a real-time manner. We conduct two experiments to evaluate the quality of the proposed approach and the effectiveness of the external concept support provided by this approach. The experiment results indicate that the concept space mined from the Web contained qualified concepts to stimulate divergent thinking. The results also demonstrate that external concept support in GSS greatly enhanced group productivity for idea generation tasks.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.5, S.1057-1070
  11. Raan, A.F.J. van; Noyons, E.C.M.: Discovery of patterns of scientific and technological development and knowledge transfer (2002) 0.01
    0.009931564 = product of:
      0.04469204 = sum of:
        0.024252208 = weight(_text_:of in 3603) [ClassicSimilarity], result of:
          0.024252208 = score(doc=3603,freq=42.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.39587128 = fieldWeight in 3603, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
        0.020439833 = weight(_text_:systems in 3603) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3603,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper addresses a bibliometric methodology to discover the structure of the scientific 'landscape' in order to gain detailed insight into the development of MD fields, their interaction, and the transfer of knowledge between them. This methodology is appropriate to visualize the position of MD activities in relation to interdisciplinary MD developments, and particularly in relation to socio-economic problems. Furthermore, it allows the identification of the major actors. It even provides the possibility of foresight. We describe a first approach to apply bibliometric mapping as an instrument to investigate characteristics of knowledge transfer. In this paper we discuss the creation of 'maps of science' with help of advanced bibliometric methods. This 'bibliometric cartography' can be seen as a specific type of data-mining, applied to large amounts of scientific publications. As an example we describe the mapping of the field neuroscience, one of the largest and fast growing fields in the life sciences. The number of publications covered by this database is about 80,000 per year, the period covered is 1995-1998. Current research is going an to update the mapping for the years 1999-2002. This paper addresses the main lines of the methodology and its application in the study of knowledge transfer.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  12. Wong, M.L.; Leung, K.S.; Cheng, J.C.Y.: Discovering knowledge from noisy databases using genetic programming (2000) 0.01
    0.009704182 = product of:
      0.043668818 = sum of:
        0.0089812735 = weight(_text_:of in 4863) [ClassicSimilarity], result of:
          0.0089812735 = score(doc=4863,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.14660224 = fieldWeight in 4863, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4863)
        0.034687545 = weight(_text_:systems in 4863) [ClassicSimilarity], result of:
          0.034687545 = score(doc=4863,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 4863, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4863)
      0.22222222 = coord(2/9)
    
    Abstract
    In data mining, we emphasize the need for learning from huge, incomplete, and imperfect data sets. To handle noise in the problem domain, existing learning systems avoid overfitting the imperfect training examples by excluding insignificant patterns. The problem is that these systems use a limiting attribute-value language for representing the training examples and the induced knowledge. Moreover, some important patterns are ignored because they are statistically insignificant. In this article, we present a framework that combines genetic programming and inductive logic programming to induce knowledge represented in various knowledge representation formalisms from noisy databases (LOGENPRO). Moreover, the system is applied to one real-life medical database. The knowledge discovered provides insights to and allows better understanding of the medical domains
    Source
    Journal of the American Society for Information Science. 51(2000) no.9, S.870-881
  13. Wang, F.L.; Yang, C.C.: Mining Web data for Chinese segmentation (2007) 0.01
    0.008942596 = product of:
      0.04024168 = sum of:
        0.019801848 = weight(_text_:of in 604) [ClassicSimilarity], result of:
          0.019801848 = score(doc=604,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 604, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=604)
        0.020439833 = weight(_text_:systems in 604) [ClassicSimilarity], result of:
          0.020439833 = score(doc=604,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=604)
      0.22222222 = coord(2/9)
    
    Abstract
    Modern information retrieval systems use keywords within documents as indexing terms for search of relevant documents. As Chinese is an ideographic character-based language, the words in the texts are not delimited by white spaces. Indexing of Chinese documents is impossible without a proper segmentation algorithm. Many Chinese segmentation algorithms have been proposed in the past. Traditional segmentation algorithms cannot operate without a large dictionary or a large corpus of training data. Nowadays, the Web has become the largest corpus that is ideal for Chinese segmentation. Although most search engines have problems in segmenting texts into proper words, they maintain huge databases of documents and frequencies of character sequences in the documents. Their databases are important potential resources for segmentation. In this paper, we propose a segmentation algorithm by mining Web data with the help of search engines. On the other hand, the Romanized pinyin of Chinese language indicates boundaries of words in the text. Our algorithm is the first to utilize the Romanized pinyin to segmentation. It is the first unified segmentation algorithm for the Chinese language from different geographical areas, and it is also domain independent because of the nature of the Web. Experiments have been conducted on the datasets of a recent Chinese segmentation competition. The results show that our algorithm outperforms the traditional algorithms in terms of precision and recall. Moreover, our algorithm can effectively deal with the problems of segmentation ambiguity, new word (unknown word) detection, and stop words.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1820-1837
  14. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.01
    0.007868583 = product of:
      0.035408624 = sum of:
        0.014968789 = weight(_text_:of in 597) [ClassicSimilarity], result of:
          0.014968789 = score(doc=597,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 597, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
        0.020439833 = weight(_text_:systems in 597) [ClassicSimilarity], result of:
          0.020439833 = score(doc=597,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 597, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
      0.22222222 = coord(2/9)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1871-1883
  15. Hereth, J.; Stumme, G.; Wille, R.; Wille, U.: Conceptual knowledge discovery and data analysis (2000) 0.01
    0.0076537454 = product of:
      0.034441855 = sum of:
        0.0140020205 = weight(_text_:of in 5083) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=5083,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 5083, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
        0.020439833 = weight(_text_:systems in 5083) [ClassicSimilarity], result of:
          0.020439833 = score(doc=5083,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
      0.22222222 = coord(2/9)
    
    Abstract
    In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin
  16. Ku, L.-W.; Chen, H.-H.: Mining opinions from the Web : beyond relevance retrieval (2007) 0.01
    0.006894304 = product of:
      0.031024367 = sum of:
        0.010584532 = weight(_text_:of in 605) [ClassicSimilarity], result of:
          0.010584532 = score(doc=605,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 605, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=605)
        0.020439833 = weight(_text_:systems in 605) [ClassicSimilarity], result of:
          0.020439833 = score(doc=605,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 605, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=605)
      0.22222222 = coord(2/9)
    
    Abstract
    Documents discussing public affairs, common themes, interesting products, and so on, are reported and distributed on the Web. Positive and negative opinions embedded in documents are useful references and feedbacks for governments to improve their services, for companies to market their products, and for customers to purchase their objects. Web opinion mining aims to extract, summarize, and track various aspects of subjective information on the Web. Mining subjective information enables traditional information retrieval (IR) systems to retrieve more data from human viewpoints and provide information with finer granularity. Opinion extraction identifies opinion holders, extracts the relevant opinion sentences, and decides their polarities. Opinion summarization recognizes the major events embedded in documents and summarizes the supportive and the nonsupportive evidence. Opinion tracking captures subjective information from various genres and monitors the developments of opinions from spatial and temporal dimensions. To demonstrate and evaluate the proposed opinion mining algorithms, news and bloggers' articles are adopted. Documents in the evaluation corpora are tagged in different granularities from words, sentences to documents. In the experiments, positive and negative sentiment words and their weights are mined on the basis of Chinese word structures. The f-measure is 73.18% and 63.75% for verbs and nouns, respectively. Utilizing the sentiment words mined together with topical words, we achieve f-measure 62.16% at the sentence level and 74.37% at the document level.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1838-1850
  17. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.01
    0.0063590594 = product of:
      0.057231534 = sum of:
        0.057231534 = weight(_text_:systems in 3835) [ClassicSimilarity], result of:
          0.057231534 = score(doc=3835,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 3835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=3835)
      0.11111111 = coord(1/9)
    
    Source
    Knowledge-based systems. 14(2001) nos.1/2, S.37-53
  18. Brückner, T.; Dambeck, H.: Sortierautomaten : Grundlagen der Textklassifizierung (2003) 0.01
    0.006055334 = product of:
      0.054498006 = sum of:
        0.054498006 = weight(_text_:software in 2398) [ClassicSimilarity], result of:
          0.054498006 = score(doc=2398,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 2398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=2398)
      0.11111111 = coord(1/9)
    
    Abstract
    Rechnung, Kündigung oder Adressänderung? Eingehende Briefe und E-Mails werden immer häufiger von Software statt aufwändig von Menschenhand sortiert. Die Textklassifizierer arbeiten erstaunlich genau. Sie fahnden auch nach ähnlichen Texten und sorgen so für einen schnellen Überblick. Ihre Werkzeuge sind Linguistik, Statistik und Logik
  19. Klein, H.: Web Content Mining (2004) 0.01
    0.006055334 = product of:
      0.054498006 = sum of:
        0.054498006 = weight(_text_:software in 3154) [ClassicSimilarity], result of:
          0.054498006 = score(doc=3154,freq=8.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 3154, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=3154)
      0.11111111 = coord(1/9)
    
    Abstract
    Web Mining - ein Schlagwort, das mit der Verbreitung des Internets immer öfter zu lesen und zu hören ist. Die gegenwärtige Forschung beschäftigt sich aber eher mit dem Nutzungsverhalten der Internetnutzer, und ein Blick in Tagungsprogramme einschlägiger Konferenzen (z.B. GOR - German Online Research) zeigt, dass die Analyse der Inhalte kaum Thema ist. Auf der GOR wurden 1999 zwei Vorträge zu diesem Thema gehalten, auf der Folgekonferenz 2001 kein einziger. Web Mining ist der Oberbegriff für zwei Typen von Web Mining: Web Usage Mining und Web Content Mining. Unter Web Usage Mining versteht man das Analysieren von Daten, wie sie bei der Nutzung des WWW anfallen und von den Servern protokolliert wenden. Man kann ermitteln, welche Seiten wie oft aufgerufen wurden, wie lange auf den Seiten verweilt wurde und vieles andere mehr. Beim Web Content Mining wird der Inhalt der Webseiten untersucht, der nicht nur Text, sondern auf Bilder, Video- und Audioinhalte enthalten kann. Die Software für die Analyse von Webseiten ist in den Grundzügen vorhanden, doch müssen die meisten Webseiten für die entsprechende Analysesoftware erst aufbereitet werden. Zuerst müssen die relevanten Websites ermittelt werden, die die gesuchten Inhalte enthalten. Das geschieht meist mit Suchmaschinen, von denen es mittlerweile Hunderte gibt. Allerdings kann man nicht davon ausgehen, dass die Suchmaschinen alle existierende Webseiten erfassen. Das ist unmöglich, denn durch das schnelle Wachstum des Internets kommen täglich Tausende von Webseiten hinzu, und bereits bestehende ändern sich der werden gelöscht. Oft weiß man auch nicht, wie die Suchmaschinen arbeiten, denn das gehört zu den Geschäftsgeheimnissen der Betreiber. Man muss also davon ausgehen, dass die Suchmaschinen nicht alle relevanten Websites finden (können). Der nächste Schritt ist das Herunterladen der Websites, dafür gibt es Software, die unter den Bezeichnungen OfflineReader oder Webspider zu finden ist. Das Ziel dieser Programme ist, die Website in einer Form herunterzuladen, die es erlaubt, die Website offline zu betrachten. Die Struktur der Website wird in der Regel beibehalten. Wer die Inhalte einer Website analysieren will, muss also alle Dateien mit seiner Analysesoftware verarbeiten können. Software für Inhaltsanalyse geht davon aus, dass nur Textinformationen in einer einzigen Datei verarbeitet werden. QDA Software (qualitative data analysis) verarbeitet dagegen auch Audiound Videoinhalte sowie internetspezifische Kommunikation wie z.B. Chats.
  20. Chen, S.Y.; Liu, X.: ¬The contribution of data mining to information science : making sense of it all (2005) 0.00
    0.0024443932 = product of:
      0.021999538 = sum of:
        0.021999538 = weight(_text_:of in 4655) [ClassicSimilarity], result of:
          0.021999538 = score(doc=4655,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3591007 = fieldWeight in 4655, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=4655)
      0.11111111 = coord(1/9)
    
    Source
    Journal of information science. 30(2005) no.6, S.550-

Languages

  • e 42
  • d 6