Search (126 results, page 1 of 7)

  • × theme_ss:"Data Mining"
  • × type_ss:"a"
  1. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.13
    0.1325582 = product of:
      0.1988373 = sum of:
        0.010462033 = weight(_text_:in in 668) [ClassicSimilarity], result of:
          0.010462033 = score(doc=668,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.18837526 = sum of:
          0.15370671 = weight(_text_:education in 668) [ClassicSimilarity], result of:
            0.15370671 = score(doc=668,freq=12.0), product of:
              0.24110512 = queryWeight, product of:
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.051176514 = queryNorm
              0.6375091 = fieldWeight in 668, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.0390625 = fieldNorm(doc=668)
          0.034668557 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
            0.034668557 = score(doc=668,freq=2.0), product of:
              0.17921144 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051176514 = queryNorm
              0.19345059 = fieldWeight in 668, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=668)
      0.6666667 = coord(2/3)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
  2. Jones, K.M.L.; Rubel, A.; LeClere, E.: ¬A matter of trust : higher education institutions as information fiduciaries in an age of educational data mining and learning analytics (2020) 0.04
    0.042269282 = product of:
      0.06340392 = sum of:
        0.0090603875 = weight(_text_:in in 5968) [ClassicSimilarity], result of:
          0.0090603875 = score(doc=5968,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.1301535 = fieldWeight in 5968, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
        0.05434353 = product of:
          0.10868706 = sum of:
            0.10868706 = weight(_text_:education in 5968) [ClassicSimilarity], result of:
              0.10868706 = score(doc=5968,freq=6.0), product of:
                0.24110512 = queryWeight, product of:
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.051176514 = queryNorm
                0.450787 = fieldWeight in 5968, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5968)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Higher education institutions are mining and analyzing student data to effect educational, political, and managerial outcomes. Done under the banner of "learning analytics," this work can-and often does-surface sensitive data and information about, inter alia, a student's demographics, academic performance, offline and online movements, physical fitness, mental wellbeing, and social network. With these data, institutions and third parties are able to describe student life, predict future behaviors, and intervene to address academic or other barriers to student success (however defined). Learning analytics, consequently, raise serious issues concerning student privacy, autonomy, and the appropriate flow of student data. We argue that issues around privacy lead to valid questions about the degree to which students should trust their institution to use learning analytics data and other artifacts (algorithms, predictive scores) with their interests in mind. We argue that higher education institutions are paradigms of information fiduciaries. As such, colleges and universities have a special responsibility to their students. In this article, we use the information fiduciary concept to analyze cases when learning analytics violate an institution's responsibility to its students.
  3. Gill, A.J.; Hinrichs-Krapels, S.; Blanke, T.; Grant, J.; Hedges, M.; Tanner, S.: Insight workflow : systematically combining human and computational methods to explore textual data (2017) 0.03
    0.027891522 = product of:
      0.041837282 = sum of:
        0.010462033 = weight(_text_:in in 3682) [ClassicSimilarity], result of:
          0.010462033 = score(doc=3682,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 3682, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3682)
        0.03137525 = product of:
          0.0627505 = sum of:
            0.0627505 = weight(_text_:education in 3682) [ClassicSimilarity], result of:
              0.0627505 = score(doc=3682,freq=2.0), product of:
                0.24110512 = queryWeight, product of:
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.051176514 = queryNorm
                0.260262 = fieldWeight in 3682, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3682)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Analyzing large quantities of real-world textual data has the potential to provide new insights for researchers. However, such data present challenges for both human and computational methods, requiring a diverse range of specialist skills, often shared across a number of individuals. In this paper we use the analysis of a real-world data set as our case study, and use this exploration as a demonstration of our "insight workflow," which we present for use and adaptation by other researchers. The data we use are impact case study documents collected as part of the UK Research Excellence Framework (REF), consisting of 6,679 documents and 6.25 million words; the analysis was commissioned by the Higher Education Funding Council for England (published as report HEFCE 2015). In our exploration and analysis we used a variety of techniques, ranging from keyword in context and frequency information to more sophisticated methods (topic modeling), with these automated techniques providing an empirical point of entry for in-depth and intensive human analysis. We present the 60 topics to demonstrate the output of our methods, and illustrate how the variety of analysis techniques can be combined to provide insights. We note potential limitations and propose future work.
  4. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.024635023 = product of:
      0.036952533 = sum of:
        0.012684541 = weight(_text_:in in 2908) [ClassicSimilarity], result of:
          0.012684541 = score(doc=2908,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.1822149 = fieldWeight in 2908, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04853598 = score(doc=2908,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  5. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.024069648 = product of:
      0.03610447 = sum of:
        0.008369626 = weight(_text_:in in 1737) [ClassicSimilarity], result of:
          0.008369626 = score(doc=1737,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.120230645 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.027734846 = product of:
          0.05546969 = sum of:
            0.05546969 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.05546969 = score(doc=1737,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  6. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.02
    0.024069648 = product of:
      0.03610447 = sum of:
        0.008369626 = weight(_text_:in in 1270) [ClassicSimilarity], result of:
          0.008369626 = score(doc=1270,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.120230645 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.027734846 = product of:
          0.05546969 = sum of:
            0.05546969 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.05546969 = score(doc=1270,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  7. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.02
    0.021419886 = product of:
      0.032129828 = sum of:
        0.014795548 = weight(_text_:in in 1605) [ClassicSimilarity], result of:
          0.014795548 = score(doc=1605,freq=16.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.21253976 = fieldWeight in 1605, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.017334279 = product of:
          0.034668557 = sum of:
            0.034668557 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.034668557 = score(doc=1605,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  8. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.02
    0.019354125 = product of:
      0.029031187 = sum of:
        0.011696909 = weight(_text_:in in 5011) [ClassicSimilarity], result of:
          0.011696909 = score(doc=5011,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.16802745 = fieldWeight in 5011, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.017334279 = product of:
          0.034668557 = sum of:
            0.034668557 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.034668557 = score(doc=5011,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
  9. Hölzig, C.: Google spürt Grippewellen auf : Die neue Anwendung ist bisher auf die USA beschränkt (2008) 0.02
    0.017135909 = product of:
      0.025703862 = sum of:
        0.011836439 = weight(_text_:in in 2403) [ClassicSimilarity], result of:
          0.011836439 = score(doc=2403,freq=16.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.17003182 = fieldWeight in 2403, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2403)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 2403) [ClassicSimilarity], result of:
              0.027734846 = score(doc=2403,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 2403, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2403)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    "Vor Google gibt es kein Entrinnen. Nun macht sich die größte Internetsuchmaschine daran, auch gefährliche Grippewellen in den USA vorauszusagen - und das schneller als die US-Gesundheitsbehörde. In den Regionen, in denen die Influenza grassiert, häufen sich erfahrungsgemäß auch die Online-Anfragen im Internet speziell zu diesem Thema. "Wir haben einen engen Zusammenhang feststellen können zwischen Personen, die nach themenbezogenen Informationen suchen, und Personen, die tatsächlich an der Grippe erkrankt sind", schreibt Google. Ein Webtool namens "Google Flu Trends" errechnet aus den Anfragen die Ausbreitung von Grippeviren. Auch wenn nicht jeder Nutzer erkrankt sei, spiegele die Zahl der Anfragen doch ziemlich genau die Entwicklung einer Grippewelle wider. Das belege ein Vergleich mit den Daten der US-Seuchenkontrollbehörde CDC, die in den meisten Fällen nahezu identisch seien. Die Internet-Suchmaschine könne anders als die Gesundheitsbehörde täglich auf aktuelle Daten zurückgreifen. Dadurch sei Google in der Lage, die Grippesaison ein bis zwei Wochen früher vorherzusagen. Und Zeit bedeutet Leben, wie Lyn Finelli sagt, Leiter der Abteilung Influenza der USSeuchenkontrollbehörde: "Je früher wir gewarnt werden, desto früher können wir handeln. Dies kann die Anzahl der Erkrankten erheblich minimieren." "Google Flu Trends" ist das erste Projekt, das Datenbanken einer Suchmaschine nutzt, um einen auftretenden Grippevirus zu lokalisieren - zurzeit nur in den USA, aber weltweite Prognosen wären ein folgerichtiger nächster Schritt. Philip M. Polgreen von der Universität von Iowa verspricht sich noch viel mehr: "Theoretisch können wir diese Flut an Informationen dazu nutzen, auch den Verlauf anderer Krankheiten besser zu studieren." Um das Grippe-Ausbreitungsmodell zu erstellen, hat Google mehrere hundert Milliarden Suchanfragen aus den vergangenen Jahren analysiert. Datenschützer haben den Internetgiganten bereits mehrfach als "datenschutzfeindlich" eingestuft. Die Anwender wüssten weder, was mit den gesammelten Daten passiere, noch wie lange gespeicherte Informationen verfügbar seien. Google versichert jedoch, dass "Flu Trends" die Privatsphäre wahre. Das Tool könne niemals dazu genutzt werden, einzelne Nutzer zu identifizieren, da wir bei der Erstellung der Statistiken lediglich anonyme Datenmaterialien nutzen. Die Muster, die wir in den Daten analysieren, ergeben erst in einem größeren Kontext Sinn." An einer echten Virus-Grippe - nicht zu verwechseln mit einer Erkältung - erkranken weltweit mehrere Millionen Menschen, mehr als 500 000 sterben daran."
    Date
    3. 5.1997 8:44:22
  10. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.02
    0.01617866 = product of:
      0.04853598 = sum of:
        0.04853598 = product of:
          0.09707196 = sum of:
            0.09707196 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.09707196 = score(doc=4577,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 4.2000 18:01:22
  11. Peters, G.; Gaese, V.: ¬Das DocCat-System in der Textdokumentation von G+J (2003) 0.02
    0.016078722 = product of:
      0.02411808 = sum of:
        0.010250657 = weight(_text_:in in 1507) [ClassicSimilarity], result of:
          0.010250657 = score(doc=1507,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14725187 = fieldWeight in 1507, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=1507)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 1507) [ClassicSimilarity], result of:
              0.027734846 = score(doc=1507,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 1507, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1507)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Wir werden einmal die Grundlagen des Text-Mining-Systems bei IBM darstellen, dann werden wir das Projekt etwas umfangreicher und deutlicher darstellen, da kennen wir uns aus. Von daher haben wir zwei Teile, einmal Heidelberg, einmal Hamburg. Noch einmal zur Technologie. Text-Mining ist eine von IBM entwickelte Technologie, die in einer besonderen Ausformung und Programmierung für uns zusammengestellt wurde. Das Projekt hieß bei uns lange Zeit DocText Miner und heißt seit einiger Zeit auf Vorschlag von IBM DocCat, das soll eine Abkürzung für Document-Categoriser sein, sie ist ja auch nett und anschaulich. Wir fangen an mit Text-Mining, das bei IBM in Heidelberg entwickelt wurde. Die verstehen darunter das automatische Indexieren als eine Instanz, also einen Teil von Text-Mining. Probleme werden dabei gezeigt, und das Text-Mining ist eben eine Methode zur Strukturierung von und der Suche in großen Dokumentenmengen, die Extraktion von Informationen und, das ist der hohe Anspruch, von impliziten Zusammenhängen. Das letztere sei dahingestellt. IBM macht das quantitativ, empirisch, approximativ und schnell. das muss man wirklich sagen. Das Ziel, und das ist ganz wichtig für unser Projekt gewesen, ist nicht, den Text zu verstehen, sondern das Ergebnis dieser Verfahren ist, was sie auf Neudeutsch a bundle of words, a bag of words nennen, also eine Menge von bedeutungstragenden Begriffen aus einem Text zu extrahieren, aufgrund von Algorithmen, also im Wesentlichen aufgrund von Rechenoperationen. Es gibt eine ganze Menge von linguistischen Vorstudien, ein wenig Linguistik ist auch dabei, aber nicht die Grundlage der ganzen Geschichte. Was sie für uns gemacht haben, ist also die Annotierung von Pressetexten für unsere Pressedatenbank. Für diejenigen, die es noch nicht kennen: Gruner + Jahr führt eine Textdokumentation, die eine Datenbank führt, seit Anfang der 70er Jahre, da sind z.Z. etwa 6,5 Millionen Dokumente darin, davon etwas über 1 Million Volltexte ab 1993. Das Prinzip war lange Zeit, dass wir die Dokumente, die in der Datenbank gespeichert waren und sind, verschlagworten und dieses Prinzip haben wir auch dann, als der Volltext eingeführt wurde, in abgespeckter Form weitergeführt. Zu diesen 6,5 Millionen Dokumenten gehören dann eben auch ungefähr 10 Millionen Faksimileseiten, weil wir die Faksimiles auch noch standardmäßig aufheben.
    Date
    22. 4.2003 11:45:36
  12. Lischka, K.: Spurensuche im Datenwust : Data-Mining-Software fahndet nach kriminellen Mitarbeitern, guten Kunden - und bald vielleicht auch nach Terroristen (2002) 0.01
    0.013550482 = product of:
      0.020325722 = sum of:
        0.009925156 = weight(_text_:in in 1178) [ClassicSimilarity], result of:
          0.009925156 = score(doc=1178,freq=20.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14257601 = fieldWeight in 1178, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1178)
        0.010400566 = product of:
          0.020801133 = sum of:
            0.020801133 = weight(_text_:22 in 1178) [ClassicSimilarity], result of:
              0.020801133 = score(doc=1178,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.116070345 = fieldWeight in 1178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1178)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    "Ob man als Terrorist einen Anschlag gegen die Vereinigten Staaten plant, als Kassierer Scheine aus der Kasse unterschlägt oder für bestimmte Produkte besonders gerne Geld ausgibt - einen Unterschied macht Data-Mining-Software da nicht. Solche Programme analysieren riesige Daten- mengen und fällen statistische Urteile. Mit diesen Methoden wollen nun die For- scher des "Information Awaren in den Vereinigten Staaten Spuren von Terroristen in den Datenbanken von Behörden und privaten Unternehmen wie Kreditkartenfirmen finden. 200 Millionen Dollar umfasst der Jahresetat für die verschiedenen Forschungsprojekte. Dass solche Software in der Praxis funktioniert, zeigen die steigenden Umsätze der Anbieter so genannter Customer-Relationship-Management-Software. Im vergangenen Jahr ist das Potenzial für analytische CRM-Anwendungen laut dem Marktforschungsinstitut IDC weltweit um 22 Prozent gewachsen, bis zum Jahr 2006 soll es in Deutschland mit einem jährlichen Plus von 14,1 Prozent so weitergehen. Und das trotz schwacher Konjunktur - oder gerade deswegen. Denn ähnlich wie Data-Mining der USRegierung helfen soll, Terroristen zu finden, entscheiden CRM-Programme heute, welche Kunden für eine Firma profitabel sind. Und welche es künftig sein werden, wie Manuela Schnaubelt, Sprecherin des CRM-Anbieters SAP, beschreibt: "Die Kundenbewertung ist ein zentraler Bestandteil des analytischen CRM. Sie ermöglicht es Unternehmen, sich auf die für sie wichtigen und richtigen Kunden zu fokussieren. Darüber hinaus können Firmen mit speziellen Scoring- Verfahren ermitteln, welche Kunden langfristig in welchem Maße zum Unternehmenserfolg beitragen." Die Folgen der Bewertungen sind für die Betroffenen nicht immer positiv: Attraktive Kunden profitieren von individuellen Sonderangeboten und besonderer Zuwendung. Andere hängen vielleicht so lauge in der Warteschleife des Telefonservice, bis die profitableren Kunden abgearbeitet sind. So könnte eine praktische Umsetzung dessen aussehen, was SAP-Spreche-rin Schnaubelt abstrakt beschreibt: "In vielen Unternehmen wird Kundenbewertung mit der klassischen ABC-Analyse durchgeführt, bei der Kunden anhand von Daten wie dem Umsatz kategorisiert werden. A-Kunden als besonders wichtige Kunden werden anders betreut als C-Kunden." Noch näher am geplanten Einsatz von Data-Mining zur Terroristenjagd ist eine Anwendung, die heute viele Firmen erfolgreich nutzen: Sie spüren betrügende Mitarbeiter auf. Werner Sülzer vom großen CRM-Anbieter NCR Teradata beschreibt die Möglichkeiten so: "Heute hinterlässt praktisch jeder Täter - ob Mitarbeiter, Kunde oder Lieferant - Datenspuren bei seinen wirtschaftskriminellen Handlungen. Es muss vorrangig darum gehen, einzelne Spuren zu Handlungsmustern und Täterprofilen zu verdichten. Das gelingt mittels zentraler Datenlager und hoch entwickelter Such- und Analyseinstrumente." Von konkreten Erfolgen sprich: Entlas-sungen krimineller Mitarbeiter-nach Einsatz solcher Programme erzählen Unternehmen nicht gerne. Matthias Wilke von der "Beratungsstelle für Technologiefolgen und Qualifizierung" (BTQ) der Gewerkschaft Verdi weiß von einem Fall 'aus der Schweiz. Dort setzt die Handelskette "Pick Pay" das Programm "Lord Lose Prevention" ein. Zwei Monate nach Einfüh-rung seien Unterschlagungen im Wert von etwa 200 000 Franken ermittelt worden. Das kostete mehr als 50 verdächtige Kassiererinnen und Kassierer den Job.
    Jede Kasse schickt die Daten zu Stornos, Rückgaben, Korrekturen und dergleichen an eine zentrale Datenbank. Aus den Informationen errechnet das Programm Kassiererprofile. Wessen Arbeit stark Durchschnitt abweicht, macht sich verdächtig. Die Kriterien" legen im Einzelnen die Revisionsabteilungen fest, doch generell gilt: "Bei Auffälligkeiten wie überdurchschnittlichvielenStornierungen, Off nen der Kassenschublade ohne Verkauf nach einem Storno oder Warenrücknahmen ohne Kassenbon, können die Vorgänge nachträglich einzelnen Personen zugeordnet werden", sagt Rene Schiller, Marketing-Chef des Lord-Herstellers Logware. Ein Kündigungsgrund ist eine solche Datensammlung vor Gericht nicht. Doch auf der Basis können Unternehmen gezielt Detektive einsetzen. Oder sie konfrontieren die Mitarbeiter mit dem Material; woraufhin Schuldige meist gestehen. Wilke sieht Programme wie Lord kritisch:"Jeder, der in dem Raster auffällt, kann ein potenzieller Betrüger oder Dieb sein und verdient besondere Beobachtung." Dabei könne man vom Standard abweichen, weil man unausgeschlafen und deshalb unkonzentriert sei. Hier tut sich für Wilke die Gefahr technisierter Leistungskontrolle auf. "Es ist ja nicht schwierig, mit den Programmen zu berechnen, wie lange beispielsweise das Kassieren eines Samstagseinkaufs durchschnittlich dauert." Die Betriebsräte - ihre Zustimmung ist beim Einsatz technischer Kon trolleinrichtungen nötig - verurteilen die wertende Software weniger eindeutig. Im Gegenteil: Bei Kaufhof und Edeka haben sie dem Einsatz zugestimmt. Denn: "Die wollen ja nicht, dass ganze Abteilungen wegen Inventurverlusten oder dergleichen unter Generalverdacht fallen", erklärt Gewerkschaftler Wilke: "Angesichts der Leistungen kommerzieller Data-Mining-Programme verblüfft es, dass in den Vereinigten Staaten das "Information Awareness Office" noch drei Jahre für Forschung und Erprobung der eigenen Programme veranschlagt. 2005 sollen frühe Prototypen zur Terroristensuche einesgetz werden. Doch schon jetzt regt sich Protest. Datenschützer wie Marc Botenberg vom Informationszentrum für Daten schutz sprechen vom "ehrgeizigsten öffentlichen Überwachungssystem, das je vorgeschlagen wurde". Sie warnen besonders davor, Daten aus der Internetnutzung und private Mails auszuwerten. Das Verteidigungsministerium rudert zurück. Man denke nicht daran, über die Software im Inland aktiv zu werden. "Das werden die Geheimdienste, die Spionageabwehr und die Strafverfolger tun", sagt Unterstaatssekretär Edward Aldridge. Man werde während der Entwicklung und der Tests mit konstruierten und einigen - aus Sicht der Datenschützer unbedenklichen - realen Informationen arbeiten. Zu denken gibt jedoch Aldriges Antwort auf die Frage, warum so viel Geld für die Entwicklung von Übersetzungssoftware eingeplant ist: Damit man Datenbanken in anderen Sprachen nutzen könne - sofern man auf sie rechtmäßigen Zugriff bekommt."
  13. Jäger, L.: Von Big Data zu Big Brother (2018) 0.01
    0.012034824 = product of:
      0.018052235 = sum of:
        0.004184813 = weight(_text_:in in 5234) [ClassicSimilarity], result of:
          0.004184813 = score(doc=5234,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.060115322 = fieldWeight in 5234, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=5234)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 5234) [ClassicSimilarity], result of:
              0.027734846 = score(doc=5234,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    1983 bewegte ein einziges Thema die gesamte Bundesrepublik: die geplante Volkszählung. Jeder Haushalt in Westdeutschland sollte Fragebögen mit 36 Fragen zur Wohnsituation, den im Haushalt lebenden Personen und über ihre Einkommensverhältnisse ausfüllen. Es regte sich massiver Widerstand, hunderte Bürgerinitiativen formierten sich im ganzen Land gegen die Befragung. Man wollte nicht "erfasst" werden, die Privatsphäre war heilig. Es bestand die (berechtigte) Sorge, dass die Antworten auf den eigentlich anonymisierten Fragebögen Rückschlüsse auf die Identität der Befragten zulassen. Das Bundesverfassungsgericht gab den Klägern gegen den Zensus Recht: Die geplante Volkszählung verstieß gegen den Datenschutz und damit auch gegen das Grundgesetz. Sie wurde gestoppt. Nur eine Generation später geben wir sorglos jedes Mal beim Einkaufen die Bonuskarte der Supermarktkette heraus, um ein paar Punkte für ein Geschenk oder Rabatte beim nächsten Einkauf zu sammeln. Und dabei wissen wir sehr wohl, dass der Supermarkt damit unser Konsumverhalten bis ins letzte Detail erfährt. Was wir nicht wissen, ist, wer noch Zugang zu diesen Daten erhält. Deren Käufer bekommen nicht nur Zugriff auf unsere Einkäufe, sondern können über sie auch unsere Gewohnheiten, persönlichen Vorlieben und Einkommen ermitteln. Genauso unbeschwert surfen wir im Internet, googeln und shoppen, mailen und chatten. Google, Facebook und Microsoft schauen bei all dem nicht nur zu, sondern speichern auf alle Zeiten alles, was wir von uns geben, was wir einkaufen, was wir suchen, und verwenden es für ihre eigenen Zwecke. Sie durchstöbern unsere E-Mails, kennen unser persönliches Zeitmanagement, verfolgen unseren momentanen Standort, wissen um unsere politischen, religiösen und sexuellen Präferenzen (wer kennt ihn nicht, den Button "an Männern interessiert" oder "an Frauen interessiert"?), unsere engsten Freunde, mit denen wir online verbunden sind, unseren Beziehungsstatus, welche Schule wir besuchen oder besucht haben und vieles mehr.
    Date
    22. 1.2018 11:33:49
  14. Bath, P.A.: Data mining in health and medical information (2003) 0.01
    0.0068337712 = product of:
      0.020501314 = sum of:
        0.020501314 = weight(_text_:in in 4263) [ClassicSimilarity], result of:
          0.020501314 = score(doc=4263,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.29450375 = fieldWeight in 4263, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4263)
      0.33333334 = coord(1/3)
    
    Abstract
    Data mining (DM) is part of a process by which information can be extracted from data or databases and used to inform decision making in a variety of contexts (Benoit, 2002; Michalski, Bratka & Kubat, 1997). DM includes a range of tools and methods for extractiog information; their use in the commercial sector for knowledge extraction and discovery has been one of the main driving forces in their development (Adriaans & Zantinge, 1996; Benoit, 2002). DM has been developed and applied in numerous areas. This review describes its use in analyzing health and medical information.
  15. Maaten, L. van den: Learning a parametric embedding by preserving local structure (2009) 0.01
    0.0064586527 = product of:
      0.019375958 = sum of:
        0.019375958 = weight(_text_:in in 3883) [ClassicSimilarity], result of:
          0.019375958 = score(doc=3883,freq=14.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.27833787 = fieldWeight in 3883, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3883)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper presents a new unsupervised dimensionality reduction technique, called parametric t-SNE, that learns a parametric mapping between the high-dimensional data space and the low-dimensional latent space. Parametric t-SNE learns the parametric mapping in such a way that the local structure of the data is preserved as well as possible in the latent space. We evaluate the performance of parametric t-SNE in experiments on three datasets, in which we compare it to the performance of two other unsupervised parametric dimensionality reduction techniques. The results of experiments illustrate the strong performance of parametric t-SNE, in particular, in learning settings in which the dimensionality of the latent space is relatively low.
  16. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.01
    0.00627722 = product of:
      0.01883166 = sum of:
        0.01883166 = weight(_text_:in in 1205) [ClassicSimilarity], result of:
          0.01883166 = score(doc=1205,freq=18.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.27051896 = fieldWeight in 1205, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.33333334 = coord(1/3)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
  17. Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.: From data mining to knowledge discovery in databases (1996) 0.01
    0.0060402583 = product of:
      0.018120775 = sum of:
        0.018120775 = weight(_text_:in in 7458) [ClassicSimilarity], result of:
          0.018120775 = score(doc=7458,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.260307 = fieldWeight in 7458, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=7458)
      0.33333334 = coord(1/3)
    
    Abstract
    Gives an overview of data mining and knowledge discovery in databases. Clarifies how they are related both to each other and to related fields. Mentions real world applications data mining techniques, challenges involved in real world applications of knowledge discovery, and current and future research directions
  18. Schwartz, F.; Fang, Y.C.: Citation data analysis on hydrogeology (2007) 0.01
    0.0055797505 = product of:
      0.016739251 = sum of:
        0.016739251 = weight(_text_:in in 433) [ClassicSimilarity], result of:
          0.016739251 = score(doc=433,freq=32.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.24046129 = fieldWeight in 433, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=433)
      0.33333334 = coord(1/3)
    
    Abstract
    This article explores the status of research in hydrogeology using data mining techniques. First we try to explain what citation analysis is and review some of the previous work on citation analysis. The main idea in this article is to address some common issues about citation numbers and the use of these data. To validate the use of citation numbers, we compare the citation patterns for Water Resources Research papers in the 1980s with those in the 1990s. The citation growths for highly cited authors from the 1980s are used to examine whether it is possible to predict the citation patterns for highly-cited authors in the 1990s. If the citation data prove to be steady and stable, these numbers then can be used to explore the evolution of science in hydrogeology. The famous quotation, "If you are not the lead dog, the scenery never changes," attributed to Lee Iacocca, points to the importance of an entrepreneurial spirit in all forms of endeavor. In the case of hydrogeological research, impact analysis makes it clear how important it is to be a pioneer. Statistical correlation coefficients are used to retrieve papers among a collection of 2,847 papers before and after 1991 sharing the same topics with 273 papers in 1991 in Water Resources Research. The numbers of papers before and after 1991 are then plotted against various levels of citations for papers in 1991 to compare the distributions of paper population before and after that year. The similarity metrics based on word counts can ensure that the "before" papers are like ancestors and "after" papers are descendants in the same type of research. This exercise gives us an idea of how many papers are populated before and after 1991 (1991 is chosen based on balanced numbers of papers before and after that year). In addition, the impact of papers is measured in terms of citation presented as "percentile," a relative measure based on rankings in one year, in order to minimize the effect of time.
  19. Hereth, J.; Stumme, G.; Wille, R.; Wille, U.: Conceptual knowledge discovery and data analysis (2000) 0.01
    0.0052310163 = product of:
      0.015693048 = sum of:
        0.015693048 = weight(_text_:in in 5083) [ClassicSimilarity], result of:
          0.015693048 = score(doc=5083,freq=18.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.22543246 = fieldWeight in 5083, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin
    Series
    Lecture notes in computer science; vol.1867: Lecture notes on artificial intelligence
  20. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.01
    0.0052310163 = product of:
      0.015693048 = sum of:
        0.015693048 = weight(_text_:in in 5053) [ClassicSimilarity], result of:
          0.015693048 = score(doc=5053,freq=18.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.22543246 = fieldWeight in 5053, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5053)
      0.33333334 = coord(1/3)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
    Footnote
    Beitrag in einem Themenheft: 'In (Big) Data we trust: Value creation in knowledge organizations'.

Years

Languages

  • e 105
  • d 21

Classifications