Search (66 results, page 2 of 4)

  • × theme_ss:"Data Mining"
  • × year_i:[2000 TO 2010}
  1. Liu, Y.; Huang, X.; An, A.: Personalized recommendation with adaptive mixture of markov models (2007) 0.00
    0.0033183135 = product of:
      0.0099549405 = sum of:
        0.0099549405 = weight(_text_:a in 606) [ClassicSimilarity], result of:
          0.0099549405 = score(doc=606,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19109234 = fieldWeight in 606, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=606)
      0.33333334 = coord(1/3)
    
    Abstract
    With more and more information available on the Internet, the task of making personalized recommendations to assist the user's navigation has become increasingly important. Considering there might be millions of users with different backgrounds accessing a Web site everyday, it is infeasible to build a separate recommendation system for each user. To address this problem, clustering techniques can first be employed to discover user groups. Then, user navigation patterns for each group can be discovered, to allow the adaptation of a Web site to the interest of each individual group. In this paper, we propose to model user access sequences as stochastic processes, and a mixture of Markov models based approach is taken to cluster users and to capture the sequential relationships inherent in user access histories. Several important issues that arise in constructing the Markov models are also addressed. The first issue lies in the complexity of the mixture of Markov models. To improve the efficiency of building/maintaining the mixture of Markov models, we develop a lightweight adapt-ive algorithm to update the model parameters without recomputing model parameters from scratch. The second issue concerns the proper selection of training data for building the mixture of Markov models. We investigate two different training data selection strategies and perform extensive experiments to compare their effectiveness on a real dataset that is generated by a Web-based knowledge management system, Livelink.
    Type
    a
  2. Liu, Y.; Zhang, M.; Cen, R.; Ru, L.; Ma, S.: Data cleansing for Web information retrieval using query independent features (2007) 0.00
    0.0033183135 = product of:
      0.0099549405 = sum of:
        0.0099549405 = weight(_text_:a in 607) [ClassicSimilarity], result of:
          0.0099549405 = score(doc=607,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19109234 = fieldWeight in 607, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
      0.33333334 = coord(1/3)
    
    Abstract
    Understanding what kinds of Web pages are the most useful for Web search engine users is a critical task in Web information retrieval (IR). Most previous works used hyperlink analysis algorithms to solve this problem. However, little research has been focused on query-independent Web data cleansing for Web IR. In this paper, we first provide analysis of the differences between retrieval target pages and ordinary ones based on more than 30 million Web pages obtained from both the Text Retrieval Conference (TREC) and a widely used Chinese search engine, SOGOU (www.sogou.com). We further propose a learning-based data cleansing algorithm for reducing Web pages that are unlikely to be useful for user requests. We found that there exists a large proportion of low-quality Web pages in both the English and the Chinese Web page corpus, and retrieval target pages can be identified using query-independent features and cleansing algorithms. The experimental results showed that our algorithm is effective in reducing a large portion of Web pages with a small loss in retrieval target pages. It makes it possible for Web IR tools to meet a large fraction of users' needs with only a small part of pages on the Web. These results may help Web search engines make better use of their limited storage and computation resources to improve search performance.
    Type
    a
  3. Fenstermacher, K.D.; Ginsburg, M.: Client-side monitoring for Web mining (2003) 0.00
    0.00325127 = product of:
      0.009753809 = sum of:
        0.009753809 = weight(_text_:a in 1611) [ClassicSimilarity], result of:
          0.009753809 = score(doc=1611,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18723148 = fieldWeight in 1611, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1611)
      0.33333334 = coord(1/3)
    
    Abstract
    "Garbage in, garbage out" is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user's actions ever reaches the Web server, analysts must rely an incomplete data. In this paper, we propose a client-side monitoring system that is unobtrusive and supports flexible data collection. Moreover, the proposed framework encompasses client-side applications beyond the Web browser. Expanding monitoring beyond the browser to incorporate standard office productivity tools enables analysts to derive a much richer and more accurate picture of user behavior an the Web.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"
    Type
    a
  4. Maaten, L. van den; Hinton, G.: Visualizing data using t-SNE (2008) 0.00
    0.003128536 = product of:
      0.009385608 = sum of:
        0.009385608 = weight(_text_:a in 3888) [ClassicSimilarity], result of:
          0.009385608 = score(doc=3888,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18016359 = fieldWeight in 3888, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3888)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.
    Type
    a
  5. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.00
    0.0030970925 = product of:
      0.009291277 = sum of:
        0.009291277 = weight(_text_:a in 3835) [ClassicSimilarity], result of:
          0.009291277 = score(doc=3835,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 3835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3835)
      0.33333334 = coord(1/3)
    
    Type
    a
  6. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.00
    0.0030970925 = product of:
      0.009291277 = sum of:
        0.009291277 = weight(_text_:a in 601) [ClassicSimilarity], result of:
          0.009291277 = score(doc=601,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 601, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
    Type
    a
  7. Medien-Informationsmanagement : Archivarische, dokumentarische, betriebswirtschaftliche, rechtliche und Berufsbild-Aspekte ; [Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar und Folgetagung 2001 in Köln] (2003) 0.00
    0.0030606482 = product of:
      0.009181945 = sum of:
        0.009181945 = product of:
          0.01836389 = sum of:
            0.01836389 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
              0.01836389 = score(doc=1833,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.116070345 = fieldWeight in 1833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1833)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2008 19:49:22
  8. Sánchez, D.; Chamorro-Martínez, J.; Vila, M.A.: Modelling subjectivity in visual perception of orientation for image retrieval (2003) 0.00
    0.00296799 = product of:
      0.00890397 = sum of:
        0.00890397 = weight(_text_:a in 1067) [ClassicSimilarity], result of:
          0.00890397 = score(doc=1067,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1709182 = fieldWeight in 1067, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1067)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper we combine computer vision and data mining techniques to model high-level concepts for image retrieval, on the basis of basic perceptual features of the human visual system. High-level concepts related to these features are learned and represented by means of a set of fuzzy association rules. The concepts so acquired can be used for image retrieval with the advantage that it is not needed to provide an image as a query. Instead, a query is formulated by using the labels that identify the learned concepts as search terms, and the retrieval process calculates the relevance of an image to the query by an inference mechanism. An additional feature of our methodology is that it can capture user's subjectivity. For that purpose, fuzzy sets theory is employed to measure user's assessments about the fulfillment of a concept by an image.
    Type
    a
  9. Srinivasan, P.: Text mining in biomedicine : challenges and opportunities (2006) 0.00
    0.00296799 = product of:
      0.00890397 = sum of:
        0.00890397 = weight(_text_:a in 1497) [ClassicSimilarity], result of:
          0.00890397 = score(doc=1497,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1709182 = fieldWeight in 1497, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1497)
      0.33333334 = coord(1/3)
    
    Abstract
    Text mining is about making serendipity more likely. Serendipity, the chance discovery of interesting ideas, has been responsible for many discoveries in science. Text mining systems strive to explore large text collections, separate the potentially meaningfull connections from a vast and mostly noisy background of random associations. In this paper we provide a summary of our text mining approach and also illustrate briefly some of the experiments we have conducted with this approach. In particular we use a profile-based text mining method. We have used these profiles to explore the global distribution of disease research, replicate discoveries made by others and propose new hypotheses. Text mining holds much potential that has yet to be tapped.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
    Type
    a
  10. Li, J.; Zhang, P.; Cao, J.: External concept support for group support systems through Web mining (2009) 0.00
    0.00296799 = product of:
      0.00890397 = sum of:
        0.00890397 = weight(_text_:a in 2806) [ClassicSimilarity], result of:
          0.00890397 = score(doc=2806,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1709182 = fieldWeight in 2806, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2806)
      0.33333334 = coord(1/3)
    
    Abstract
    External information plays an important role in group decision-making processes, yet research about external information support for Group Support Systems (GSS) has been lacking. In this study, we propose an approach to build a concept space to provide external concept support for GSS users. Built on a Web mining algorithm, the approach can mine a concept space from the Web and retrieve related concepts from the concept space based on users' comments in a real-time manner. We conduct two experiments to evaluate the quality of the proposed approach and the effectiveness of the external concept support provided by this approach. The experiment results indicate that the concept space mined from the Web contained qualified concepts to stimulate divergent thinking. The results also demonstrate that external concept support in GSS greatly enhanced group productivity for idea generation tasks.
    Type
    a
  11. Hereth, J.; Stumme, G.; Wille, R.; Wille, U.: Conceptual knowledge discovery and data analysis (2000) 0.00
    0.0027093915 = product of:
      0.008128175 = sum of:
        0.008128175 = weight(_text_:a in 5083) [ClassicSimilarity], result of:
          0.008128175 = score(doc=5083,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15602624 = fieldWeight in 5083, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5083)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin
    Type
    a
  12. Wang, F.L.; Yang, C.C.: Mining Web data for Chinese segmentation (2007) 0.00
    0.0027093915 = product of:
      0.008128175 = sum of:
        0.008128175 = weight(_text_:a in 604) [ClassicSimilarity], result of:
          0.008128175 = score(doc=604,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15602624 = fieldWeight in 604, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=604)
      0.33333334 = coord(1/3)
    
    Abstract
    Modern information retrieval systems use keywords within documents as indexing terms for search of relevant documents. As Chinese is an ideographic character-based language, the words in the texts are not delimited by white spaces. Indexing of Chinese documents is impossible without a proper segmentation algorithm. Many Chinese segmentation algorithms have been proposed in the past. Traditional segmentation algorithms cannot operate without a large dictionary or a large corpus of training data. Nowadays, the Web has become the largest corpus that is ideal for Chinese segmentation. Although most search engines have problems in segmenting texts into proper words, they maintain huge databases of documents and frequencies of character sequences in the documents. Their databases are important potential resources for segmentation. In this paper, we propose a segmentation algorithm by mining Web data with the help of search engines. On the other hand, the Romanized pinyin of Chinese language indicates boundaries of words in the text. Our algorithm is the first to utilize the Romanized pinyin to segmentation. It is the first unified segmentation algorithm for the Chinese language from different geographical areas, and it is also domain independent because of the nature of the Web. Experiments have been conducted on the datasets of a recent Chinese segmentation competition. The results show that our algorithm outperforms the traditional algorithms in terms of precision and recall. Moreover, our algorithm can effectively deal with the problems of segmentation ambiguity, new word (unknown word) detection, and stop words.
    Type
    a
  13. Keim, D.A.: Data Mining mit bloßem Auge (2002) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 1086) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1086,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1086, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=1086)
      0.33333334 = coord(1/3)
    
    Type
    a
  14. Kruse, R.; Borgelt, C.: Suche im Datendschungel (2002) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 1087) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1087,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1087, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=1087)
      0.33333334 = coord(1/3)
    
    Type
    a
  15. Wrobel, S.: Lern- und Entdeckungsverfahren (2002) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 1105) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1105,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=1105)
      0.33333334 = coord(1/3)
    
    Type
    a
  16. Relational data mining (2001) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 1303) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1303,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1303, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1303)
      0.33333334 = coord(1/3)
    
    Abstract
    As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The ferst part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programmeng; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
  17. Srinivasan, P.: Text mining : generating hypotheses from MEDLINE (2004) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 2225) [ClassicSimilarity], result of:
          0.007963953 = score(doc=2225,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 2225, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2225)
      0.33333334 = coord(1/3)
    
    Abstract
    Hypothesis generation, a crucial initial step for making scientific discoveries, relies an prior knowledge, experience, and intuition. Chance connections made between seemingly distinct subareas sometimes turn out to be fruitful. The goal in text mining is to assist in this process by automatically discovering a small set of interesting hypotheses from a suitable text collection. In this report, we present open and closed text mining algorithms that are built within the discovery framework established by Swanson and Smalheiser. Our algorithms represent topics using metadata profiles. When applied to MEDLINE, these are McSH based profiles. We present experiments that demonstrate the effectiveness of our algorithms. Specifically, our algorithms successfully generate ranked term lists where the key terms representing novel relationships between topics are ranked high.
    Type
    a
  18. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 4242) [ClassicSimilarity], result of:
          0.007963953 = score(doc=4242,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 4242, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
      0.33333334 = coord(1/3)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
    Type
    a
  19. Benoit, G.: Data mining (2002) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 4296) [ClassicSimilarity], result of:
          0.007963953 = score(doc=4296,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 4296, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4296)
      0.33333334 = coord(1/3)
    
    Abstract
    Data mining (DM) is a multistaged process of extracting previously unanticipated knowledge from large databases, and applying the results to decision making. Data mining tools detect patterns from the data and infer associations and rules from them. The extracted information may then be applied to prediction or classification models by identifying relations within the data records or between databases. Those patterns and rules can then guide decision making and forecast the effects of those decisions. However, this definition may be applied equally to "knowledge discovery in databases" (KDD). Indeed, in the recent literature of DM and KDD, a source of confusion has emerged, making it difficult to determine the exact parameters of both. KDD is sometimes viewed as the broader discipline, of which data mining is merely a component-specifically pattern extraction, evaluation, and cleansing methods (Raghavan, Deogun, & Sever, 1998, p. 397). Thurasingham (1999, p. 2) remarked that "knowledge discovery," "pattern discovery," "data dredging," "information extraction," and "knowledge mining" are all employed as synonyms for DM. Trybula, in his ARIST chapter an text mining, observed that the "existing work [in KDD] is confusing because the terminology is inconsistent and poorly defined.
    Type
    a
  20. Chen, S.Y.; Liu, X.: ¬The contribution of data mining to information science : making sense of it all (2005) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 4655) [ClassicSimilarity], result of:
          0.007963953 = score(doc=4655,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 4655, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4655)
      0.33333334 = coord(1/3)
    
    Type
    a

Languages

  • e 48
  • d 18

Types

  • a 59
  • m 7
  • s 4
  • el 3
  • More… Less…