Search (70 results, page 2 of 4)

  • × theme_ss:"Formale Begriffsanalyse"
  • × type_ss:"a"
  1. Priss, U.: Formal concept analysis in information science (2006) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 4305) [ClassicSimilarity], result of:
              0.0108246 = score(doc=4305,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 4305, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=4305)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  2. Sedelow, W.A.: ¬The formal analysis of concepts (1993) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 620) [ClassicSimilarity], result of:
              0.0108246 = score(doc=620,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 620, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=620)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present paper focuses on the extraction, by means of a formal logical/mathematical methodology (i.e. automatically, exclusively by rule), of concept content, as in, for example, continuous discourse. The approach to a fully formal defintion of concept content ultimately is owing to a German government initiative to establish 'standards' regarding concepts, in conjunction with efforts to stipulate precisely (and then, derivatively, through computer prgrams) data and information needs according to work role in certain government offices
    Type
    a
  3. Kipke, U.; Wille, R.: Formale Begriffsanalyse erläutert an einem Wortfeld (1987) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 6233) [ClassicSimilarity], result of:
              0.0108246 = score(doc=6233,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 6233, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=6233)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. De Maio, C.; Fenza, G.; Loia, V.; Senatore, S.: Hierarchical web resources retrieval by exploiting Fuzzy Formal Concept Analysis (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2737) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2737,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2737, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2737)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, knowledge structuring is assuming important roles in several real world applications such as decision support, cooperative problem solving, e-commerce, Semantic Web and, even in planning systems. Ontologies play an important role in supporting automated processes to access information and are at the core of new strategies for the development of knowledge-based systems. Yet, developing an ontology is a time-consuming task which often needs an accurate domain expertise to tackle structural and logical difficulties in the definition of concepts as well as conceivable relationships. This work presents an ontology-based retrieval approach, that supports data organization and visualization and provides a friendly navigation model. It exploits the fuzzy extension of the Formal Concept Analysis theory to elicit conceptualizations from datasets and generate a hierarchy-based representation of extracted knowledge. An intuitive graphical interface provides a multi-facets view of the built ontology. Through a transparent query-based retrieval, final users navigate across concepts, relations and population.
    Type
    a
  5. Reinartz, T.P.; Zickwolff, M.: ¬Two conceptual approaches to acquire human expert knowledge in a complex real world domain (1996) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 5908) [ClassicSimilarity], result of:
              0.009567685 = score(doc=5908,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 5908, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Carpineto, C.; Romano, G.: Order-theoretical ranking (2000) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 4766) [ClassicSimilarity], result of:
              0.009567685 = score(doc=4766,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 4766, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4766)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Current best-match ranking (BMR) systems perform well but cannot handle word mismatch between a query and a document. The best known alternative ranking method, hierarchical clustering-based ranking (HCR), seems to be more robust than BMR with respect to this problem, but it is hampered by theoretical and practical limitations. We present an approach to document ranking that explicitly addresses the word mismatch problem by exploiting interdocument similarity information in a novel way. Document ranking is seen as a query-document transformation driven by a conceptual representation of the whole document collection, into which the query is merged. Our approach is nased on the theory of concept (or Galois) lattices, which, er argue, provides a powerful, well-founded, and conputationally-tractable framework to model the space in which documents and query are represented and to compute such a transformation. We compared information retrieval using concept lattice-based ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as well as BMR, and suggested that, of the two best methods, BMR achieved better performance than CLR on the whole document set, whereas CLR compared more favorably when only the first retrieved documents were used for evaluation. We also evaluated the three methods' specific ability to rank documents that did not match the query, in which case the speriority of CLR over BMR and HCR was apparent
    Type
    a
  7. Ganter, B.; Wille, R.: Conceptual scaling (1989) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3138) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3138,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3138, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3138)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Kollewe, W.: Data representation by nested line diagrams illustrated by a survey of pensioners (1991) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 5230) [ClassicSimilarity], result of:
              0.009471525 = score(doc=5230,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 5230, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With formal concept analysis surveys are analyzable in the way that a meaningful picture of the answers of the interviewed persons is available. Line diagrams of large concept lattices might become less readable up to the point that it is impossible to pursue the line segments with the eyes. Nested line diagrams give the opportunity to overcome these difficulties. The main idea of nested line diagrams is to partition the line diagram into boxes so that line segments between two boxes are all parallel and may be replaced by one line segment. The possibility to draw line diagrams with more than two factors does allow it to describe concept lattices with many hundred or thousand concepts in a clear structure. In practice it has often been proven useful to take standardized scales for the single levels
    Type
    a
  9. Vogt, C.; Wille, R.: Formale Begriffsanalyse : Darstellung und Analyse von bibliographischen Daten (1994) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 7603) [ClassicSimilarity], result of:
              0.009471525 = score(doc=7603,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 7603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7603)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Zickwolff, M.: Zur Rolle der Formalen Begriffsanalyse in der Wissensakquisition (1994) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 8938) [ClassicSimilarity], result of:
              0.009471525 = score(doc=8938,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 8938, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8938)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Wille, R.: Knowledge acquisition by methods of formal concept analysis (1989) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 594) [ClassicSimilarity], result of:
              0.009471525 = score(doc=594,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=594)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Burmeister, P.: ConImp - Ein Programm zur Formalen Begriffsanalyse (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2110) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2110,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2110, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2110)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Lengnink, K.: Ähnlichkeit als Distanz in Begriffsverbänden (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4033) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4033,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4033)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Ganter, B.: Begriffe und Implikationen (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4195) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4195,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4195, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4195)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Pollandt, S.: Datenanalyse mit Fuzzy-Begriffen (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4196) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4196,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4196, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4196)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Prediger, S.: Terminologische Merkmalslogik in der Formalen Begriffsanalyse (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4197) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4197,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Wille, R.; Zickwolff, M.: Grundlagen einer Triadischen Begriffsanalyse (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4198) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4198,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4198, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4198)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Lindig, C.; Snelting, G.: Formale Begriffsnalyse im Software Engineering (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4199) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4199,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4199, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4199)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Rock, T.; Wille, R.: ¬Ein TOSCANA-Erkundungssystem zur Literatursuche (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4202) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4202,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4202)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Sedelow, S.Y.; Sedelow, W.A.: Thesauri and concept-lattice semantic nets (1994) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 7733) [ClassicSimilarity], result of:
              0.009374379 = score(doc=7733,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 7733, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Formal concept lattices are a promising vehicle for the construction of rigorous and empirically accurate semantic nets. Presented here are results of initial experiments with concept lattices as representations of semantic relationships in the implicit structure of a large database (e.g. Roget's thesaurus)
    Type
    a