Search (39 results, page 1 of 2)

  • × theme_ss:"Information"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Houston, R.D.; Harmon, E.G.: Re-envisioning the information concept : systematic definitions (2002) 0.10
    0.0960265 = product of:
      0.192053 = sum of:
        0.192053 = sum of:
          0.10786875 = weight(_text_:e.g in 136) [ClassicSimilarity], result of:
            0.10786875 = score(doc=136,freq=2.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.4611081 = fieldWeight in 136, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.0625 = fieldNorm(doc=136)
          0.08418425 = weight(_text_:22 in 136) [ClassicSimilarity], result of:
            0.08418425 = score(doc=136,freq=6.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.536106 = fieldWeight in 136, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=136)
      0.5 = coord(1/2)
    
    Date
    22. 2.2007 18:56:23
    22. 2.2007 19:22:13
  2. Eiriksson, J.M.; Retsloff, J.M.: Librarians in the 'information age' : promoter of change or provider of stability? (2005) 0.04
    0.044151224 = product of:
      0.08830245 = sum of:
        0.08830245 = sum of:
          0.053934377 = weight(_text_:e.g in 3012) [ClassicSimilarity], result of:
            0.053934377 = score(doc=3012,freq=2.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.23055404 = fieldWeight in 3012, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.03125 = fieldNorm(doc=3012)
          0.034368075 = weight(_text_:22 in 3012) [ClassicSimilarity], result of:
            0.034368075 = score(doc=3012,freq=4.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.21886435 = fieldWeight in 3012, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=3012)
      0.5 = coord(1/2)
    
    Abstract
    When we were all facing the turn of the century and the somewhat larger turn of the millennium, we left behind epochs of colonialism, imperialism, capitalism, nazism and racialism. Not that the ideologies mentioned does no longer exist, but their impact as grand narratives has gone and they now exist as fragmented discursive parts of their former, illusive hegemony. Parts that have been thrown into the pits of post modern complexity. The 21st century holds no answers, no new meaning, at most it provides human communication a certain self reflectivity due to the increasing egocentrism and individuality of people (i.e. still mostly western people). Another symptom of the loss of grand narratives is a feeling of loss of meaning in everyday life, as well as the state of democracies around the world. Democracy shivers in its void between anarchy and repressive dictatorship. The description 'information age' provides the times we are in with a useful sticker. It tents both back in time e.g. the late 20, century digitalisation and forward in time by givingr origin to the contemporary discourse of social semantics i.e. Dream society, Knowledge society, Post modern society, Risk society, Hypercomplex society etc. The phrase 'information age' implied the introduction of a paradigm shift, and now it is still here showing that paradigms do not shift, they slide. This paper outlines a manifest for librarians and librarianship of the information age. The information age puts the spotlight on the librarian, both regarding classical tasks such as classification and cataloguing as well as new tasks such as systems analysis and design or database searching.
    Date
    22. 7.2009 11:23:22
  3. Hjoerland, B.: ¬The controversy over the concept of information : a rejoinder to Professor Bates (2009) 0.04
    0.036787182 = product of:
      0.073574364 = sum of:
        0.073574364 = sum of:
          0.058385678 = weight(_text_:e.g in 2748) [ClassicSimilarity], result of:
            0.058385678 = score(doc=2748,freq=6.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.24958208 = fieldWeight in 2748, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.01953125 = fieldNorm(doc=2748)
          0.0151886875 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
            0.0151886875 = score(doc=2748,freq=2.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.09672529 = fieldWeight in 2748, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=2748)
      0.5 = coord(1/2)
    
    Content
    "This letter considers some main arguments in Professor Bates' article (2008), which is part of our former debate (Bates, 2005,2006; Hjoerland, 2007). Bates (2008) does not write much to restate or enlarge on her theoretical position but is mostly arguing about what she claims Hjorland (2007) ignored or misinterpreted in her two articles. Bates (2008, p. 842) wrote that my arguments did not reflect "a standard of coherence, consistency, and logic that is expected of an argument presented in a scientific journal." My argumentation below will refute this statement. This controversy is whether information should be understood as a subjective phenomenon (alone), as an objective phenomenon (alone), or as a combined objective and a subjective phenomenon ("having it both ways"). Bates (2006) defined "information" (sometimes, e.g., termed "information 1," p. 1042) as an objective phenomenon and "information 2" as a subjective phenomenon. However, sometimes the term "information" is also used as a synonym for "information 2," e.g., "the term information is understood to refer to one or both senses" (p. 1042). Thus, Professor Bates is not consistent in using the terminology that she herself introduces, and confusion in this controversy may be caused by Professor Bates' ambiguity in her use of the term "information." Bates (2006, p. 1033) defined information as an objective phenomenon by joining a definition by Edwin Parker: "Information is the pattern of organization of matter and energy." The argument in Hjoerland (2007) is, by contrast, that information should be understood as a subjective phenomenon all the way down: That neither the objective definition of information nor "having it both ways" is fruitful. This is expressed, for example, by joining Karpatschof's (2000) definition of information as a physical signal relative to a certain release mechanism, which implies that information is not something objective that can be understood independently of an observer or independently of other kinds of mechanism that are programmed to be sensitive to specific attributes of a signal: There are many differences in the world, and each of them is potentially informative in given situations. Regarding Parker's definition, "patterns of organization of matter and energy" are no more than that until they inform somebody about something. When they inform somebody about something, they may be considered information. The following quote is part of the argumentation in Bates (2008): "He contrasts my definition of information as 'observer-independent' with his position that information is 'situational' and adds a list of respected names on the situational side (Hjoerland, 2007, p. 1448). What this sentence, and much of the remainder of his argument, ignores is the fact that my approach accounts for both an observer-independent and a contextual, situational sense of information." Yes, it is correct that I mostly concentrated on refuting Bates' objective definition of information. It is as if Bates expects an overall appraisal of her work rather than providing a specific analysis of the points on which there are disagreements. I see Bates' "having it both ways": a symptom of inconsistence in argumentation.
    Bates (2008, p. 843) further writes about her definition of information: "This is the objectivist foundation, the rock bottom minimum of the meaning of information; it informs both articles throughout." This is exactly the focus of my disagreement. If we take a word in a language, it is understood as both being a "pattern of organization of matter and energy" (e.g., a sound) and carrying meaning. But the relation between the physical sign and its meaning is considered an arbitrary relation in linguistics. Any physical material has the potential of carrying any meaning and to inform somebody. The physical stuff in itself is not information until it is used as a sign. An important issue in this debate is whether Bates' examples demonstrate the usefulness of her own position as opposed to mine. Her example about information seeking concerning navigation and how "the very layout of the ship and the design of the bridge promoted the smooth flow of information from the exterior of the ship to the crew and among the crewmembers" (Bates, 2006, pp. 1042-1043) does not justify Bates' definition of information as an objective phenomenon. The design is made for a purpose, and this purpose determines how information should be defined in this context. Bates' view on "curatorial sciences" (2006, p. 1043) is close to Hjorland's suggestions (2000) about "memory institutions," which is based on the subjective understanding of information. However, she does not relate to this proposal, and she does not argue how the objective understanding of information is related to this example. I therefore conclude that Bates' practical examples do not support her objective definition of information, nor do they support her "having it both ways." Finally, I exemplify the consequences of my understanding of information by showing how an archaeologist and a geologist might represent the same stone differently in information systems. Bates (2008, p. 843) writes about this example: "This position is completely consistent with mine." However, this "consistency" was not recognized by Bates until I published my objections and, therefore, this is an indication that my criticism was needed. I certainly share Professor Bates (2008) advice to read her original articles: They contain much important stuff. I just recommend that the reader ignore the parts that argue about information being an objective phenomenon."
    Date
    22. 3.2009 18:13:27
  4. dpa: Struktur des Denkorgans wird bald entschlüsselt sein (2000) 0.03
    0.025776058 = product of:
      0.051552117 = sum of:
        0.051552117 = product of:
          0.103104234 = sum of:
            0.103104234 = weight(_text_:22 in 3952) [ClassicSimilarity], result of:
              0.103104234 = score(doc=3952,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.6565931 = fieldWeight in 3952, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3952)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    17. 7.1996 9:33:22
    22. 7.2000 19:05:41
  5. Fallis, D.: Social epistemology and information science (2006) 0.02
    0.0243019 = product of:
      0.0486038 = sum of:
        0.0486038 = product of:
          0.0972076 = sum of:
            0.0972076 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.0972076 = score(doc=4368,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:22:28
  6. Dervos, D.A.; Coleman, A.: ¬A common sense approach to defining data, information, and metadata (2006) 0.02
    0.02359629 = product of:
      0.04719258 = sum of:
        0.04719258 = product of:
          0.09438516 = sum of:
            0.09438516 = weight(_text_:e.g in 227) [ClassicSimilarity], result of:
              0.09438516 = score(doc=227,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40346956 = fieldWeight in 227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=227)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many competing definitions for the terms data, information, metadata, and knowledge can be traced in the library and information science literature. The lack of a clear consensus in the way reference is made to the corresponding fundamental concepts is intensified if one considers additional disciplinary perspectives, e.g. database technology, data mining, etc. In the present paper, we use a common sense approach, to selectively survey the literature, and define these terms in a way that can advance the interdisciplinary development of information systems.
  7. Donsbach, W.: Wahrheit in den Medien : über den Sinn eines methodischen Objektivitätsbegriffes (2001) 0.02
    0.02225657 = product of:
      0.04451314 = sum of:
        0.04451314 = product of:
          0.17805256 = sum of:
            0.17805256 = weight(_text_:3a in 5895) [ClassicSimilarity], result of:
              0.17805256 = score(doc=5895,freq=2.0), product of:
                0.38017118 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46834838 = fieldWeight in 5895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5895)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Source
    Politische Meinung. 381(2001) Nr.1, S.65-74 [https%3A%2F%2Fwww.dgfe.de%2Ffileadmin%2FOrdnerRedakteure%2FSektionen%2FSek02_AEW%2FKWF%2FPublikationen_Reihe_1989-2003%2FBand_17%2FBd_17_1994_355-406_A.pdf&usg=AOvVaw2KcbRsHy5UQ9QRIUyuOLNi]
  8. afp: Gehirn von Taxifahrern passt sich an : Größerer Hippocampus (2000) 0.02
    0.021264162 = product of:
      0.042528324 = sum of:
        0.042528324 = product of:
          0.08505665 = sum of:
            0.08505665 = weight(_text_:22 in 4496) [ClassicSimilarity], result of:
              0.08505665 = score(doc=4496,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.5416616 = fieldWeight in 4496, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4496)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2000 19:05:18
  9. Fallis, D.: On verifying the accuracy of information : philosophical perspectives (2004) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 830) [ClassicSimilarity], result of:
              0.08090157 = score(doc=830,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 830, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=830)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    How can one verify the accuracy of recorded information (e.g., information found in books, newspapers, and on Web sites)? In this paper, I argue that work in the epistemology of testimony (especially that of philosophers David Hume and Alvin Goldman) can help with this important practical problem in library and information science. This work suggests that there are four important areas to consider when verifying the accuracy of information: (i) authority, (ii) independent corroboration, (iii) plausibility and support, and (iv) presentation. I show how philosophical research in these areas can improve how information professionals go about teaching people how to evaluate information. Finally, I discuss several further techniques that information professionals can and should use to make it easier for people to verify the accuracy of information.
  10. Morris, J.: Individual differences in the interpretation of text : implications for information science (2009) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 3318) [ClassicSimilarity], result of:
              0.08090157 = score(doc=3318,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 3318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3318)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many tasks in library and information science (e.g., indexing, abstracting, classification, and text analysis techniques such as discourse and content analysis) require text meaning interpretation, and, therefore, any individual differences in interpretation are relevant and should be considered, especially for applications in which these tasks are done automatically. This article investigates individual differences in the interpretation of one aspect of text meaning that is commonly used in such automatic applications: lexical cohesion and lexical semantic relations. Experiments with 26 participants indicate an approximately 40% difference in interpretation. In total, 79, 83, and 89 lexical chains (groups of semantically related words) were analyzed in 3 texts, respectively. A major implication of this result is the possibility of modeling individual differences for individual users. Further research is suggested for different types of texts and readers than those used here, as well as similar research for different aspects of text meaning.
  11. ap: Schlaganfall : Computer-Bild zeigt den Heilungsprozess im Gehirn (2000) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 4231) [ClassicSimilarity], result of:
              0.0729057 = score(doc=4231,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 4231, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4231)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2000 19:05:31
  12. Nerlich, H.: Schlußveranstaltung des Kongresses 'Information und Öffentlichkeit' am 23. März 2000 in Leipzig : "Zukunft der Fachinformation" (2000) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 4401) [ClassicSimilarity], result of:
              0.0729057 = score(doc=4401,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 4401, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4401)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2000 13:33:40
  13. kal: Hubert Markl zur Zukunft der Forschung (2000) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 4893) [ClassicSimilarity], result of:
              0.0729057 = score(doc=4893,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 4893, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4893)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    17. 7.1996 9:33:22
  14. Hjoerland, B.: ¬The special competency of information specialists (2002) 0.02
    0.017515704 = product of:
      0.035031408 = sum of:
        0.035031408 = product of:
          0.070062816 = sum of:
            0.070062816 = weight(_text_:e.g in 1265) [ClassicSimilarity], result of:
              0.070062816 = score(doc=1265,freq=6.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.2994985 = fieldWeight in 1265, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "In a new article published in Journal of Documentation, 2002, I claim that the special competency of information specialists and information scientists are related to "domain analysis." Information science grew out of special librarianship and documentation (cf. Williams, 1997), and implicit in its tradition has in my opinion been a focus an subject knowledge. Although domain analysis has earlier been introduced in JASIST (Hjoerland & Albrechtsen, 1995), the new article introduces 11 Specific approaches to domain analysis, which I Claim together define the Specific competencies of information specialists. The approaches are (I) Producing and evaluating literature guides and subject gateways, (2) Producing and evaluating special classifications and thesauri, (3) Research an and competencies in indexing and retrieving information specialties, (4) Knowledge about empirical user studies in subject areas, (5) Producing and interpreting bibliometrical studies, (6) Historical studies of information structures and Services in domains, (7) Studies of documents and genres in knowledge domains, (8) Epistemological and critical studies of different paradigms, assumptions, and interests in domains, (9) Knowledge about terminological studies, LSP (Languages for Special Purposes), and discourse analysis in knowledge fields, (10) Knowledge about and studies of structures and institutions in scientific and professional communication in a domain, (11) Knowledge about methods and results from domain analytic studies about professional cognition, knowledge representation in computer science and artificial intelligence. By bringing these approaches together, the paper advocates a view which may have been implicit in previous literature but which has not before been Set out systematically. The approaches presented here are neither exhaustive nor mutually exhaustve, but an attempt is made to present the state of the art. Specific examples and selective reviews of literature are provided, and the strength and drawback of each of these approaches are being discussed. It is my Claim that the information specialist who has worked with these 1 1 approaches in a given domain (e.g., music, sociology, or chemistry) has a special expertise that should not be mixed up with the kind of expertise taught at universities in corresponding subjects. Some of these 11 approaches are today well-known in schools of LIS. Bibliometrics is an example, Other approaches are new and represent a view of what should be introduced in the training of information professionals. First and foremost does the article advocates the view that these 1 1 approaches should be seen as supplementary. That the Professional identity is best maintained if Chose methods are applied to the same examples (same domain). Somebody would perhaps feel that this would make the education of information professionals too narrow. The Counter argument is that you can only understand and use these methods properly in a new domain, if you already have a deep knowledge of the Specific information problems in at least orte domain. It is a dangerous illusion to believe that one becomes more competent to work in any field if orte does not know anything about any domain. The special challenge in our science is to provide general background for use in Specific fields. This is what domain analysis is developed for. Study programs that allow the students to specialize and to work independent in the selected field (such as, for example, the Curriculum at the Royal School of LIS in Denmark) should fit well with the intentions in domain analysis. In this connection it should be emphasized that the 11 approaches are presented as general approaches that may be used in about any domain whatsoever. They should, however, be seen in connection. If this is not the case, then their relative strengths and weaknesses cannot be evaluated. The approaches do not have the same status. Some (e.g., empirical user studies) are dependent an others (e.g., epistemological studies).
  15. Crane, G.; Jones, A.: Text, information, knowledge and the evolving record of humanity (2006) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 1182) [ClassicSimilarity], result of:
              0.06741798 = score(doc=1182,freq=8.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 1182, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1182)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although the Alexandria Digital Library provides far richer data than the TGN (5.9 vs. 1.3 million names), its added size lowers, rather than increases, the accuracy of most geographic name identification systems for historical documents: most of the extra 4.6 million names cover low frequency entities that rarely occur in any particular corpus. The TGN is sufficiently comprehensive to provide quite enough noise: we find place names that are used over and over (there are almost one hundred Washingtons) and semantically ambiguous (e.g., is Washington a person or a place?). Comprehensive knowledge sources emphasize recall but lower precision. We need data with which to determine which "Tribune" or "John Brown" a particular passage denotes. Secondly and paradoxically, our reference works may not be comprehensive enough. Human actors come and go over time. Organizations appear and vanish. Even places can change their names or vanish. The TGN does associate the obsolete name Siam with the nation of Thailand (tgn,1000142) - but also with towns named Siam in Iowa (tgn,2035651), Tennessee (tgn,2101519), and Ohio (tgn,2662003). Prussia appears but as a general region (tgn,7016786), with no indication when or if it was a sovereign nation. And if places do point to the same object over time, that object may have very different significance over time: in the foundational works of Western historiography, Herodotus reminds us that the great cities of the past may be small today, and the small cities of today great tomorrow (Hdt. 1.5), while Thucydides stresses that we cannot estimate the past significance of a place by its appearance today (Thuc. 1.10). In other words, we need to know the population figures for the various Washingtons in 1870 if we are analyzing documents from 1870. The foundations have been laid for reference works that provide machine actionable information about entities at particular times in history. The Alexandria Digital Library Gazetteer Content Standard8 represents a sophisticated framework with which to create such resources: places can be associated with temporal information about their foundation (e.g., Washington, DC, founded on 16 July 1790), changes in names for the same location (e.g., Saint Petersburg to Leningrad and back again), population figures at various times and similar historically contingent data. But if we have the software and the data structures, we do not yet have substantial amounts of historical content such as plentiful digital gazetteers, encyclopedias, lexica, grammars and other reference works to illustrate many periods and, even if we do, those resources may not be in a useful form: raw OCR output of a complex lexicon or gazetteer may have so many errors and have captured so little of the underlying structure that the digital resource is useless as a knowledge base. Put another way, human beings are still much better at reading and interpreting the contents of page images than machines. While people, places, and dates are probably the most important core entities, we will find a growing set of objects that we need to identify and track across collections, and each of these categories of objects will require its own knowledge sources. The following section enumerates and briefly describes some existing categories of documents that we need to mine for knowledge. This brief survey focuses on the format of print sources (e.g., highly structured textual "database" vs. unstructured text) to illustrate some of the challenges involved in converting our published knowledge into semantically annotated, machine actionable form.
  16. Hjoerland, B.: Concept theory (2009) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 3461) [ClassicSimilarity], result of:
              0.06741798 = score(doc=3461,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 3461, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
  17. Logothetis, N.K.: ¬Das Sehen : ein Fenster zum Bewußtsein (2000) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 4225) [ClassicSimilarity], result of:
              0.06075475 = score(doc=4225,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 4225, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2000 19:02:07
  18. Davenport, E.; Cronin, B.: Knowledge management : Semantic drift or conceptual shift? (2000) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 2277) [ClassicSimilarity], result of:
              0.06075475 = score(doc=2277,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 2277, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2277)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2001 20:22:57
  19. Hammwöhner, R.: Besuch bei alten Bekannten : zu den Sprachspielen mit dem Informationsbegriff (2004) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 4669) [ClassicSimilarity], result of:
              0.06075475 = score(doc=4669,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 4669, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4669)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    27.11.2005 17:22:54
  20. Bates, M.J.: Fundamental forms of information (2006) 0.02
    0.015036034 = product of:
      0.030072069 = sum of:
        0.030072069 = product of:
          0.060144138 = sum of:
            0.060144138 = weight(_text_:22 in 2746) [ClassicSimilarity], result of:
              0.060144138 = score(doc=2746,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38301262 = fieldWeight in 2746, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 18:15:22