Search (33 results, page 2 of 2)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  • × type_ss:"el"
  1. Schallier, W.: Why organize information if you can find it? : UDC and libraries in an Internet world (2007) 0.00
    0.0016629322 = product of:
      0.009977593 = sum of:
        0.009977593 = weight(_text_:in in 549) [ClassicSimilarity], result of:
          0.009977593 = score(doc=549,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.16802745 = fieldWeight in 549, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=549)
      0.16666667 = coord(1/6)
    
    Abstract
    The Belgians Otlet and LaFontaine created the Universal Decimal Classification in order to collect and organize the world's knowledge. This happened in an age when information was almost exclusively made available by libraries. Since the internet, the quantity of information outside libraries is enormous and keeps growing every day. The internet is accessible to anybody, it is fundamentally unorganized and its content changes constantly. Collecting and organizing the world's knowledge seem to have become an impossible ambition. Perhaps it is even unnecessary, since search engines make information retrievable now. And why would we organize information if we can find it? So what will be the role of UDC and libraries in this internet environment? Libraries can still play a role as a major information provider, if they adapt fully to the expectations of a modern end user. The design and the functionalities of online catalogues should allow maximal accessibility, usability and active participation of the end user in the internet environment. Metadata, like UDC, should maximize the visibility of information, enrich it and invite the end user to assign metadata himself.
  2. Yu, N.: Readings & Web resources for faceted classification 0.00
    0.0015457221 = product of:
      0.009274333 = sum of:
        0.009274333 = weight(_text_:in in 4394) [ClassicSimilarity], result of:
          0.009274333 = score(doc=4394,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1561842 = fieldWeight in 4394, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4394)
      0.16666667 = coord(1/6)
    
    Abstract
    The term "facet" has been used in various places, while in most cases it is just a buzz word to replace what is indeed "aspect" or "category". The references below either define and explain the original concept of facet or provide guidelines for building 'real' faceted search/browse. I was interested in faceted classification because it seems to be a natural and efficient way for organizing and browsing Web collections. However, to automatically generate facets and their isolates is extremely difficult since it involves concept extraction and concept grouping, both of which are difficult problems by themselves. And it is almost impossible to achieve mutually exclusive and jointly exhaustive 'true' facets without human judgment. Nowadays, faceted search/browse widely exists, implicitly or explicitly, on a majority of retail websites due to the multi-aspects nature of the data. However, it is still rarely seen on any digital library sites. (I could be wrong since I haven't kept myself updated with this field for a while.)
  3. Day, M.; Koch, T.: ¬The role of classification schemes in Internet resource description and discovery : DESIRE - Development of a European Service for Information on Research and Education. Specification for resource description methods, part 3 (1997) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 3067) [ClassicSimilarity], result of:
          0.008924231 = score(doc=3067,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 3067, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=3067)
      0.16666667 = coord(1/6)
    
  4. Liu, S.: Decomposing DDC synthesized numbers (1996) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 5969) [ClassicSimilarity], result of:
          0.008924231 = score(doc=5969,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 5969, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5969)
      0.16666667 = coord(1/6)
    
    Abstract
    Much literature has been written speculating upon how classification can be used in online catalogs to improve information retrieval. While some empirical studies have been done exploring whether the direct use of traditional classification schemes designed for a manual environment is effective and efficient in the online environment, none has manipulated these manual classifications in such a w ay as to take full advantage of the power of both the classification and computer. It has been suggested by some authors, such as Wajenberg and Drabenstott, that this power could be realized if the individual components of synthesized DDC numbers could be identified and indexed. This paper looks at the feasibility of automatically decomposing DDC synthesized numbers and the implications of such decomposition for information retrieval. Based on an analysis of the instructions for synthesizing numbers in the main class Arts (700) and all DDC Tables, 17 decomposition rules were defined, 13 covering the Add Notes and four the Standard Subdivisions. 1,701 DDC synthesized numbers were decomposed by a computer system called DND (Dewey Number Decomposer), developed by the author. From the 1,701 numbers, 600 were randomly selected fo r examination by three judges, each evaluating 200 numbers. The decomposition success rate was 100% and it was concluded that synthesized DDC numbers can be accurately decomposed automatically. The study has implications for information retrieval, expert systems for assigning DDC numbers, automatic indexing, switching language development, enhancing classifiers' work, teaching library school students, and providing quality control for DDC number assignments. These implications were explored using a prototype retrieval system.
  5. Fast, K.; Leise, F.; Steckel, M.: Facets and controlled vocabularies : an annotated bibliography (2003) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2900) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2900,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2900, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2900)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  6. Fast, K.; Leise, F.; Steckel, M.: All about facets and controlled vocabularies (2002) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 5141) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=5141,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 5141, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=5141)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  7. Fast, K.; Leise, F.; Steckel, M.: What is a controlled vocabulary? (2002) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2417) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2417,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2417)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  8. Fast, K.; Leise, F.; Steckel, M.: Creating a controlled vocabulary (2003) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2461) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2461,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2461)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  9. Fast, K.; Leise, F.; Steckel, M.: Synonym rings and authority files (2003) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2468) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2468,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2468)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  10. Fast, K.; Leise, F.; Steckel, M.: Controlled vocabularies : a glosso-thesaurus (2003) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2469) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2469,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2469, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2469)
      0.16666667 = coord(1/6)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
  11. Panzer, M.: Towards the "webification" of controlled subject vocabulary : a case study involving the Dewey Decimal Classification (2007) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 538) [ClassicSimilarity], result of:
          0.006246961 = score(doc=538,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 538, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=538)
      0.16666667 = coord(1/6)
    
    Abstract
    The presentation will briefly introduce a series of major principles for bringing subject terminology to the network level. A closer look at one KOS in particular, the Dewey Decimal Classification, should help to gain more insight into the perceived difficulties and potential benefits of building taxonomy services out and on top of classic large-scale vocabularies or taxonomies.
  12. Louie, A.J.; Maddox, E.L.; Washington, W.: Using faceted classification to provide structure for information architecture (2003) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 2471) [ClassicSimilarity], result of:
          0.005354538 = score(doc=2471,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 2471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2471)
      0.16666667 = coord(1/6)
    
    Abstract
    This is a short, but very thorough and very interesting, report on how the writers built a faceted classification for some legal information and used it to structure a web site with navigation and searching. There is a good summary of why facets work well and how they fit into bibliographic control in general. The last section is about their implementation of a web site for the Washington State Bar Association's Council for Legal Public Education. Their classification uses three facets: Purpose (the general aim of the document, e.g. Resources for K-12 Teachers), Topic (the subject of the document), and Type (the legal format of the document). See Example Web Sites, below, for a discussion of the site and a problem with its design.
  13. Pika, J.: Universal Decimal Classification at the ETH-Bibliothek Zürich : a Swiss perspective (2007) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 5899) [ClassicSimilarity], result of:
          0.005354538 = score(doc=5899,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 5899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5899)
      0.16666667 = coord(1/6)
    
    Abstract
    The ETH library has been using the UDC for the past twenty-five years and yet most of the users had almost never taken a single notice about it. The query in today's NEBIS-OPAC (former ETHICS) is based on verbal search with three-lingual descriptors and corresponding related search-terms including e.g. synonyma as well as user-friendly expressions from scientific journals - scientific jargon - to facilitate the dialog with OPAC. A single UDC number, standing behind these descriptors, connects them to the related document-titles, regardless of language. Thus the user actually works with the UDC, without realizing it. This paper describes the experience with this OPAC and the work behind it.