Search (61 results, page 1 of 4)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2010 TO 2020}
  1. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.06
    0.06482754 = product of:
      0.097241305 = sum of:
        0.01973992 = weight(_text_:of in 3494) [ClassicSimilarity], result of:
          0.01973992 = score(doc=3494,freq=8.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.24188137 = fieldWeight in 3494, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.07750139 = sum of:
          0.028005775 = weight(_text_:science in 3494) [ClassicSimilarity], result of:
            0.028005775 = score(doc=3494,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.20372227 = fieldWeight in 3494, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3494)
          0.049495615 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
            0.049495615 = score(doc=3494,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.2708308 = fieldWeight in 3494, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3494)
      0.6666667 = coord(2/3)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  2. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.03
    0.034809783 = product of:
      0.052214675 = sum of:
        0.03453767 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.03453767 = score(doc=1418,freq=48.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.017677005 = product of:
          0.03535401 = sum of:
            0.03535401 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.03535401 = score(doc=1418,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Vukadin, A.; Slavic, A.: Challenges of facet analysis and concept placement in Universal Classifications : the example of architecture in UDC (2014) 0.03
    0.03447683 = product of:
      0.051715247 = sum of:
        0.03050284 = weight(_text_:of in 1428) [ClassicSimilarity], result of:
          0.03050284 = score(doc=1428,freq=26.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37376386 = fieldWeight in 1428, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1428)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.042424813 = score(doc=1428,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper discusses the challenges of faceted vocabulary organization in universal classifications which treat the universe of knowledge as a coherent whole and in which the concepts and subjects in different disciplines are shared, related and combined. The authors illustrate the challenges of the facet analytical approach using, as an example, the revision of class 72 in UDC. The paper reports on the research undertaken in 2013 as preparation for the revision. This consisted of analysis of concept organization in the UDC schedules in comparison with the Art & Architecture Thesaurus and class W of the Bliss Bibliographic Classification. The paper illustrates how such research can contribute to a better understanding of the field and may lead to improvements in the facet structure of this segment of the UDC vocabulary.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Szostak, R.: ¬A pluralistic approach to the philosophy of classification : a case for "public knowledge" (2015) 0.03
    0.032128956 = product of:
      0.048193432 = sum of:
        0.034190547 = weight(_text_:of in 5541) [ClassicSimilarity], result of:
          0.034190547 = score(doc=5541,freq=24.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.41895083 = fieldWeight in 5541, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5541)
        0.0140028875 = product of:
          0.028005775 = sum of:
            0.028005775 = weight(_text_:science in 5541) [ClassicSimilarity], result of:
              0.028005775 = score(doc=5541,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20372227 = fieldWeight in 5541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5541)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Any classification system should be evaluated with respect to a variety of philosophical and practical concerns. This paper explores several distinct issues: the nature of a work, the value of a statement, the contribution of information science to philosophy, the nature of hierarchy, ethical evaluation, pre- versus postcoordination, the lived experience of librarians, and formalization versus natural language. It evaluates a particular approach to classification in terms of each of these but draws general lessons for philosophical evaluation. That approach to classification emphasizes the free combination of basic concepts representing both real things in the world and the relationships among these; works are also classified in terms of theories, methods, and perspectives applied.
    Content
    Beitrag in einem Themenheft: 'Exploring Philosophies of Information'.
  5. Tennis, J.T.: ¬The strange case of eugenics : a subject's ontogeny in a long-lived classification scheme and the question of collocative integrity (2012) 0.03
    0.031938553 = product of:
      0.04790783 = sum of:
        0.03190453 = weight(_text_:of in 275) [ClassicSimilarity], result of:
          0.03190453 = score(doc=275,freq=16.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.39093933 = fieldWeight in 275, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=275)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 275) [ClassicSimilarity], result of:
              0.0320066 = score(doc=275,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 275, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=275)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article introduces the problem of collocative integrity present in long-lived classification schemes that undergo several changes. A case study of the subject "eugenics" in the Dewey Decimal Classification is presented to illustrate this phenomenon. Eugenics is strange because of the kinds of changes it undergoes. The article closes with a discussion of subject ontogeny as the name for this phenomenon and describes implications for information searching and browsing.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1350-1359
  6. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.03
    0.031163191 = product of:
      0.046744786 = sum of:
        0.029067779 = weight(_text_:of in 1417) [ClassicSimilarity], result of:
          0.029067779 = score(doc=1417,freq=34.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.35617945 = fieldWeight in 1417, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.017677005 = product of:
          0.03535401 = sum of:
            0.03535401 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.03535401 = score(doc=1417,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.03
    0.031158563 = product of:
      0.046737842 = sum of:
        0.032734957 = weight(_text_:of in 3617) [ClassicSimilarity], result of:
          0.032734957 = score(doc=3617,freq=22.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.40111488 = fieldWeight in 3617, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3617)
        0.0140028875 = product of:
          0.028005775 = sum of:
            0.028005775 = weight(_text_:science in 3617) [ClassicSimilarity], result of:
              0.028005775 = score(doc=3617,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20372227 = fieldWeight in 3617, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3617)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In view of the impact of systems theory for the construction of classification systems the two major contributions of Dewey are summarized as well as the new methods of facet analysis and organization brought into classification by Ranganathan. With the latter's "canonical" solution for the contents and arrangement of main classes, however, contemporary philosophical thought regarding the organization of knowledge seems to have been neglected. The work of the Classification Research Group and elsewhere considering integrative level theory will improve the science of classification systems construction. Besides this the influence from psychology and linguistics on the recognition of relationships between concepts is outlined as well as some practical implications of the systems approach on classification. (I.C.)
  8. Keshet, Y.: Classification systems in the light of sociology of knowledge (2011) 0.03
    0.029916778 = product of:
      0.044875167 = sum of:
        0.030730115 = weight(_text_:of in 4493) [ClassicSimilarity], result of:
          0.030730115 = score(doc=4493,freq=38.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37654874 = fieldWeight in 4493, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4493)
        0.014145052 = product of:
          0.028290104 = sum of:
            0.028290104 = weight(_text_:science in 4493) [ClassicSimilarity], result of:
              0.028290104 = score(doc=4493,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20579056 = fieldWeight in 4493, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4493)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Classification is an important process in making sense of the world, and has a pronounced social dimension. This paper aims to compare folksonomy, a new social classification system currently being developed on the web, with conventional taxonomy in the light of theoretical sociological and anthropological approaches. The co-existence of these two types of classification system raises the questions: Will and should taxonomies be hybridized with folksonomies? What can each of these systems contribute to information-searching processes, and how can the sociology of knowledge provide an answer to these questions? This paper aims also to address these issues. Design/methodology/approach - This paper is situated at the meeting point of the sociology of knowledge, epistemology and information science and aims at examining systems of classification in the light of both classical theory and current late-modern sociological and anthropological approaches. Findings - Using theoretical approaches current in the sociology of science and knowledge, the paper envisages two divergent possible outcomes. Originality/value - While concentrating on classifications systems, this paper addresses the more general social issue of what we know and how it is known. The concept of hybrid knowledge is suggested in order to illuminate the epistemological basis of late-modern knowledge being constructed by hybridizing contradictory modern knowledge categories, such as the subjective with the objective and the social with the natural. Integrating tree-like taxonomies with folksonomies or, in other words, generating a naturalized structural order of objective relations with social, subjective classification systems, can create a vast range of hybrid knowledge.
    Source
    Journal of documentation. 67(2011) no.1, S.144-158
  9. Parrochia, D.: Mathematical theory of classification (2018) 0.03
    0.029916778 = product of:
      0.044875167 = sum of:
        0.030730115 = weight(_text_:of in 4308) [ClassicSimilarity], result of:
          0.030730115 = score(doc=4308,freq=38.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37654874 = fieldWeight in 4308, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4308)
        0.014145052 = product of:
          0.028290104 = sum of:
            0.028290104 = weight(_text_:science in 4308) [ClassicSimilarity], result of:
              0.028290104 = score(doc=4308,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20579056 = fieldWeight in 4308, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4308)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    One of the main topics of scientific research, classification is the operation consisting of distributing objects in classes or groups which are, in general, less numerous than them. From Antiquity to the Classical Age, it has a long history where philosophers (Aristotle), and natural scientists (Linnaeus), took a great part. But from the nineteenth century (with the growth of chemistry and information science) and the twentieth century (with the arrival of mathematical models and computer science), mathematics (especially theory of orders and theory of graphs or hypergraphs) allows us to compute all the possible partitions, chains of partitions, covers, hypergraphs or systems of classes we can construct on a domain. In spite of these advances, most of classifications are still based on the evaluation of ressemblances between objects that constitute the empirical data. However, all these classifications remain, for technical and epistemological reasons we detail below, very unstable ones. We lack a real algebra of classifications, which could explain their properties and the relations existing between them. Though the aim of a general theory of classifications is surely a wishful thought, some recent conjecture gives the hope that the existence of a metaclassification (or classification of all classification schemes) is possible
    Series
    Reviews of concepts in knowledge organization
  10. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.03
    0.029063582 = product of:
      0.043595374 = sum of:
        0.022382967 = weight(_text_:of in 2945) [ClassicSimilarity], result of:
          0.022382967 = score(doc=2945,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2742677 = fieldWeight in 2945, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.042424813 = score(doc=2945,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  11. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.03
    0.029063582 = product of:
      0.043595374 = sum of:
        0.022382967 = weight(_text_:of in 1425) [ClassicSimilarity], result of:
          0.022382967 = score(doc=1425,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2742677 = fieldWeight in 1425, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.042424813 = score(doc=1425,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Frické, M.: Logic and the organization of information (2012) 0.03
    0.028633457 = product of:
      0.042950183 = sum of:
        0.02314711 = weight(_text_:of in 1782) [ClassicSimilarity], result of:
          0.02314711 = score(doc=1782,freq=44.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.28363106 = fieldWeight in 1782, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.019803073 = product of:
          0.039606147 = sum of:
            0.039606147 = weight(_text_:science in 1782) [ClassicSimilarity], result of:
              0.039606147 = score(doc=1782,freq=16.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.2881068 = fieldWeight in 1782, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
    LCSH
    Computer science
    Subject
    Computer science
  13. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.03
    0.027372744 = product of:
      0.041059114 = sum of:
        0.02338211 = weight(_text_:of in 2282) [ClassicSimilarity], result of:
          0.02338211 = score(doc=2282,freq=22.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.28651062 = fieldWeight in 2282, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
        0.017677005 = product of:
          0.03535401 = sum of:
            0.03535401 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.03535401 = score(doc=2282,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  14. Tennis, J.T.: Never facets alone : the evolving thought and persistent problems in Ranganathan's theories of classification (2017) 0.03
    0.02604656 = product of:
      0.03906984 = sum of:
        0.029067779 = weight(_text_:of in 5800) [ClassicSimilarity], result of:
          0.029067779 = score(doc=5800,freq=34.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.35617945 = fieldWeight in 5800, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5800)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 5800) [ClassicSimilarity], result of:
              0.020004123 = score(doc=5800,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 5800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5800)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Shiyali Ramamrita Ranganathan's theory of classification spans a number of works over a number of decades. And while he was devoted to solving many problems in the practice of librarianship, and is known as the father of library science in India (Garfield, 1984), his work in classification revolves around one central concern. His classification research addressed the problems that arose from introducing new ideas into a scheme for classification, while maintaining a meaningful hierarchical and systematically arranged order of classes. This is because hierarchical and systematically arranged classes are the defining characteristic of useful classification. To lose this order is to through the addition of new classes is to introduce confusion, if not chaos, and to move toward a useless classification - or at least one that requires complete revision. In the following chapter, I outline the stages, and the elements of those stages, in Ranganathan's thought on classification from 1926-1972, as well as posthumous work that continues his agenda. And while facets figure prominently in all of these stages; but for Ranganathan to achieve his goal, he must continually add to this central feature of his theory of classification. I will close this chapter with an outline of persistent problems that represent research fronts for the field. Chief among these are what to do about scheme change and the open question about the rigor of information modeling in light of semantic web developments.
    Source
    Dimensions of knowledge: facets for knowledge organization. Eds.: R.P. Smiraglia, u. H.-L. Lee
  15. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.03
    0.02542156 = product of:
      0.03813234 = sum of:
        0.016919931 = weight(_text_:of in 4152) [ClassicSimilarity], result of:
          0.016919931 = score(doc=4152,freq=8.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.20732689 = fieldWeight in 4152, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4152)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.042424813 = score(doc=4152,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  16. Loehrlein, A.J.; Lemieux, V.L.; Bennett, M.: ¬The classification of financial products (2014) 0.02
    0.024921581 = product of:
      0.03738237 = sum of:
        0.025379896 = weight(_text_:of in 1196) [ClassicSimilarity], result of:
          0.025379896 = score(doc=1196,freq=18.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3109903 = fieldWeight in 1196, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1196)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 1196) [ClassicSimilarity], result of:
              0.02400495 = score(doc=1196,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 1196, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1196)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In the wake of the global financial crisis, the U.S. Dodd- Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank) was enacted to provide increased transparency in financial markets. In response to Dodd-Frank, a series of rules relating to swaps record keeping have been issued, and one such rule calls for the creation of a financial products classification system. The manner in which financial products are classified will have a profound effect on data integration and analysis in the financial industry. This article considers various approaches that can be taken when classifying financial products and recommends the use of facet analysis. The article argues that this type of analysis is flexible enough to accommodate multiple viewpoints and rigorous enough to facilitate inferences that are based on the hierarchical structure. Various use cases are examined that pertain to the organization of financial products. The use cases confirm the practical utility of taxonomies that are designed according to faceted principles.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.263-280
  17. Adler, M.; Harper, L.M.: Race and ethnicity in classification systems : teaching knowledge organization from a social justice perspective (2018) 0.02
    0.023693837 = product of:
      0.035540756 = sum of:
        0.019537456 = weight(_text_:of in 5518) [ClassicSimilarity], result of:
          0.019537456 = score(doc=5518,freq=6.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.23940048 = fieldWeight in 5518, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5518)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 5518) [ClassicSimilarity], result of:
              0.0320066 = score(doc=5518,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 5518, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5518)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Classification and the organization of information are directly connected to issues surrounding social justice, diversity, and inclusion. This paper is written from the standpoint that political and epistemological aspects of knowledge organization are fundamental to research and practice and suggests ways to integrate social justice and diversity issues into courses on the organization of information.
    Content
    Beitrag in einem Themenheft: 'Race and Ethnicity in Library and Information Science: An Update'.
  18. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.02
    0.023297226 = product of:
      0.03494584 = sum of:
        0.017268835 = weight(_text_:of in 1778) [ClassicSimilarity], result of:
          0.017268835 = score(doc=1778,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.21160212 = fieldWeight in 1778, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.017677005 = product of:
          0.03535401 = sum of:
            0.03535401 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.03535401 = score(doc=1778,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
    Source
    Journal of documentation. 70(2014) no.3, S.364-391
  19. Ullah, A.; Khusro, S.; Ullah, I.: Bibliographic classification in the digital age : current trends & future directions (2017) 0.02
    0.020732109 = product of:
      0.03109816 = sum of:
        0.017095273 = weight(_text_:of in 5717) [ClassicSimilarity], result of:
          0.017095273 = score(doc=5717,freq=6.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.20947541 = fieldWeight in 5717, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5717)
        0.0140028875 = product of:
          0.028005775 = sum of:
            0.028005775 = weight(_text_:science in 5717) [ClassicSimilarity], result of:
              0.028005775 = score(doc=5717,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20372227 = fieldWeight in 5717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5717)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Bibliographic classification is among the core activities of Library & Information Science that brings order and proper management to the holdings of a library. Compared to printed media, digital collections present numerous challenges regarding their preservation, curation, organization and resource discovery & access. Therefore, true native perspective is needed to be adopted for bibliographic classification in digital environments. In this research article, we have investigated and reported different approaches to bibliographic classification of digital collections. The article also contributes two evaluation frameworks that evaluate the existing classification schemes and systems. The article presents a bird's-eye view for researchers in reaching a generalized and holistic approach towards bibliographic classification research, where new research avenues have been identified.
  20. Adler, M.A.: Disciplining knowledge at the Library of Congress (2012) 0.02
    0.019961596 = product of:
      0.029942393 = sum of:
        0.019940332 = weight(_text_:of in 423) [ClassicSimilarity], result of:
          0.019940332 = score(doc=423,freq=16.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.24433708 = fieldWeight in 423, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=423)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 423) [ClassicSimilarity], result of:
              0.020004123 = score(doc=423,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 423, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=423)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Library of Congress is a federal institution that occupies a critical space where medical, social science, political, literary, and other discourses are collected, arranged, and disseminated to Congress and the public. LC plays a vital part in discipline creation and maintenance, as it actively reproduces specific discourses, while silencing others, such as those from the humanities, social sciences, and the general public. Alternatively, social tagging seems to disregard conventions of disciplinarity and allows much more diversity of representations. Tagging may provide important insight for organizing materials in research libraries, as choices between single disciplines are no longer necessary and voices from various fields and audiences can name resources using their own terms, whether they prefer medical/technical jargon or everyday words. As the academy moves more toward interdisciplinary/transdisciplinary studies and aims to find the intersections across political, social, scientific, and cultural phenomena, the implications and effects of library organization based on classes and subjects needs to be interrogated.
    Content
    Beitrag aus einem Themenheft zu den Proceedings of the 2nd Milwaukee Conference on Ethics in Information Organization, June 15-16, 2012, School of Information Studies, University of Wisconsin-Milwaukee. Hope A. Olson, Conference Chair. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_5_i.pdf.