Search (21 results, page 1 of 2)

  • × theme_ss:"Metadaten"
  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Hunter, J.: MetaNet - a metadata term thesaurus to enable semantic interoperability between metadata domains (2001) 0.08
    0.078551635 = product of:
      0.10473551 = sum of:
        0.060926907 = weight(_text_:digital in 6471) [ClassicSimilarity], result of:
          0.060926907 = score(doc=6471,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.3081681 = fieldWeight in 6471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.01914278 = weight(_text_:library in 6471) [ClassicSimilarity], result of:
          0.01914278 = score(doc=6471,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 6471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6471)
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 6471) [ClassicSimilarity], result of:
              0.049331643 = score(doc=6471,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 6471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6471)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Metadata interoperability is a fundamental requirement for access to information within networked knowledge organization systems. The Harmony international digital library project [1] has developed a common underlying data model (the ABC model) to enable the scalable mapping of metadata descriptions across domains and media types. The ABC model [2] provides a set of basic building blocks for metadata modeling and recognizes the importance of 'events' to describe unambiguously metadata for objects with a complex history. To test and evaluate the interoperability capabilities of this model, we applied it to some real multimedia examples and analysed the results of mapping from the ABC model to various different metadata domains using XSLT [3]. This work revealed serious limitations in the ability of XSLT to support flexible dynamic semantic mapping. To overcome this, we developed MetaNet [4], a metadata term thesaurus which provides the additional semantic knowledge that is non-existent within declarative XML-encoded metadata descriptions. This paper describes MetaNet, its RDF Schema [5] representation and a hybrid mapping approach which combines the structural and syntactic mapping capabilities of XSLT with the semantic knowledge of MetaNet, to enable flexible and dynamic mapping among metadata standards.
    Source
    Journal of digital information. 1(2001) no.8, art.# 42
  2. Blanchi, C.; Petrone, J.: Distributed interoperable metadata registry (2001) 0.07
    0.07118432 = product of:
      0.14236864 = sum of:
        0.10446788 = weight(_text_:digital in 1228) [ClassicSimilarity], result of:
          0.10446788 = score(doc=1228,freq=6.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.5283983 = fieldWeight in 1228, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1228)
        0.03790077 = weight(_text_:library in 1228) [ClassicSimilarity], result of:
          0.03790077 = score(doc=1228,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.28758827 = fieldWeight in 1228, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1228)
      0.5 = coord(2/4)
    
    Abstract
    Interoperability between digital libraries depends on effective sharing of metadata. Successful sharing of metadata requires common standards for metadata exchange. Previous efforts have focused on either defining a single metadata standard, such as Dublin Core, or building digital library middleware, such as Z39.50 or Stanford's Digital Library Interoperability Protocol. In this article, we propose a distributed architecture for managing metadata and metadata schema. Instead of normalizing all metadata and schema to a single format, we have focused on building a middleware framework that tolerates heterogeneity. By providing facilities for typing and dynamic conversion of metadata, our system permits continual introduction of new forms of metadata with minimal impact on compatibility.
  3. Wen, D.; Sakaguchi, T.; Sugimoto, S.; Tabata, K.: Multilingual Access to Dublin Core Metadata of ULIS Library (2002) 0.06
    0.062224608 = product of:
      0.124449216 = sum of:
        0.086163655 = weight(_text_:digital in 2342) [ClassicSimilarity], result of:
          0.086163655 = score(doc=2342,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 2342, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=2342)
        0.03828556 = weight(_text_:library in 2342) [ClassicSimilarity], result of:
          0.03828556 = score(doc=2342,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.29050803 = fieldWeight in 2342, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.078125 = fieldNorm(doc=2342)
      0.5 = coord(2/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  4. Patton, M.; Reynolds, D.; Choudhury, G.S.; DiLauro, T.: Toward a metadata generation framework : a case study at Johns Hopkins University (2004) 0.06
    0.05752562 = product of:
      0.11505124 = sum of:
        0.0844228 = weight(_text_:digital in 1192) [ClassicSimilarity], result of:
          0.0844228 = score(doc=1192,freq=12.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.42701027 = fieldWeight in 1192, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=1192)
        0.030628446 = weight(_text_:library in 1192) [ClassicSimilarity], result of:
          0.030628446 = score(doc=1192,freq=8.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.23240642 = fieldWeight in 1192, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=1192)
      0.5 = coord(2/4)
    
    Abstract
    In the June 2003 issue of D-Lib Magazine, Kenney et al. (2003) discuss a comparative study between Cornell's email reference staff and Google's Answers service. This interesting study provided insights on the potential impact of "computing and simple algorithms combined with human intelligence" for library reference services. As mentioned in the Kenney et al. article, Bill Arms (2000) had discussed the possibilities of automated digital libraries in an even earlier D-Lib article. Arms discusses not only automating reference services, but also another library function that seems to inspire lively debates about automation-metadata creation. While intended to illuminate, these debates sometimes generate more heat than light. In an effort to explore the potential for automating metadata generation, the Digital Knowledge Center (DKC) of the Sheridan Libraries at The Johns Hopkins University developed and tested an automated name authority control (ANAC) tool. ANAC represents a component of a digital workflow management system developed in connection with the digital Lester S. Levy Collection of Sheet Music. The evaluation of ANAC followed the spirit of the Kenney et al. study that was, as they stated, "more exploratory than scientific." These ANAC evaluation results are shared with the hope of fostering constructive dialogue and discussions about the potential for semi-automated techniques or frameworks for library functions and services such as metadata creation. The DKC's research agenda emphasizes the development of tools that combine automated processes and human intervention, with the overall goal of involving humans at higher levels of analysis and decision-making. Others have looked at issues regarding the automated generation of metadata. A session at the 2003 Joint Conference on Digital Libraries was devoted to automatic metadata creation, and a session at the 2004 conference addressed automated name disambiguation. Commercial vendors such as OCLC, Marcive, and LTI have long used automated techniques for matching names to Library of Congress authority records. We began developing ANAC as a component of a larger suite of open source tools to support workflow management for digital projects. This article describes the goals for the ANAC tool, provides an overview of the metadata records used for testing, describes the architecture for ANAC, and concludes with discussions of the methodology and evaluation of the experiment comparing human cataloging and ANAC-generated results.
  5. Lightle, K.S.; Ridgway, J.S.: Generation of XML records across multiple metadata standards (2003) 0.05
    0.049779683 = product of:
      0.09955937 = sum of:
        0.068930924 = weight(_text_:digital in 2189) [ClassicSimilarity], result of:
          0.068930924 = score(doc=2189,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.34865242 = fieldWeight in 2189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=2189)
        0.030628446 = weight(_text_:library in 2189) [ClassicSimilarity], result of:
          0.030628446 = score(doc=2189,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.23240642 = fieldWeight in 2189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0625 = fieldNorm(doc=2189)
      0.5 = coord(2/4)
    
    Abstract
    This paper describes the process that Eisenhower National Clearinghouse (ENC) staff went through to develop crosswalks between metadata based on three different standards and the generation of the corresponding XML records. ENC needed to generate different flavors of XML records so that metadata would be displayed correctly in catalog records generated through different digital library interfaces. The crosswalk between USMARC, IEEE LOM, and DC-ED is included, as well as examples of the XML records.
  6. Godby, C.J.; Young, J.A.; Childress, E.: ¬A repository of metadata crosswalks (2004) 0.04
    0.043557227 = product of:
      0.08711445 = sum of:
        0.060314562 = weight(_text_:digital in 1155) [ClassicSimilarity], result of:
          0.060314562 = score(doc=1155,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.026799891 = weight(_text_:library in 1155) [ClassicSimilarity], result of:
          0.026799891 = score(doc=1155,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
      0.5 = coord(2/4)
    
    Abstract
    This paper proposes a model for metadata crosswalks that associates three pieces of information: the crosswalk, the source metadata standard, and the target metadata standard, each of which may have a machine-readable encoding and human-readable description. The crosswalks are encoded as METS records that are made available to a repository for processing by search engines, OAI harvesters, and custom-designed Web services. The METS object brings together all of the information required to access and interpret crosswalks and represents a significant improvement over previously available formats. But it raises questions about how best to describe these complex objects and exposes gaps that must eventually be filled in by the digital library community.
  7. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part I : achieving interoperability at the schema level (2006) 0.04
    0.042796366 = product of:
      0.08559273 = sum of:
        0.060926907 = weight(_text_:digital in 1176) [ClassicSimilarity], result of:
          0.060926907 = score(doc=1176,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.3081681 = fieldWeight in 1176, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1176)
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 1176) [ClassicSimilarity], result of:
              0.049331643 = score(doc=1176,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 1176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1176)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The rapid growth of Internet resources and digital collections has been accompanied by a proliferation of metadata schemas, each of which has been designed based on the requirements of particular user communities, intended users, types of materials, subject domains, project needs, etc. Problems arise when building large digital libraries or repositories with metadata records that were prepared according to diverse schemas. This article (published in two parts) contains an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and applications, for the purposes of facilitating conversion and exchange of metadata and enabling cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level, record level, and repository level. Part I of the article intends to explain possible situations in which metadata schemas may be created or implemented, whether in individual projects or in integrated repositories. It also discusses approaches used at the schema level. Part II of the article will discuss metadata interoperability efforts at the record and repository levels.
  8. Weibel, S.L.: Border crossings : reflections on a decade of metadata consensus building (2005) 0.04
    0.040034845 = product of:
      0.08006969 = sum of:
        0.060926907 = weight(_text_:digital in 1187) [ClassicSimilarity], result of:
          0.060926907 = score(doc=1187,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.3081681 = fieldWeight in 1187, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
        0.01914278 = weight(_text_:library in 1187) [ClassicSimilarity], result of:
          0.01914278 = score(doc=1187,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 1187, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
      0.5 = coord(2/4)
    
    Abstract
    In June of this year, I performed my final official duties as part of the Dublin Core Metadata Initiative management team. It is a happy irony to affix a seal on that service in this journal, as both D-Lib Magazine and the Dublin Core celebrate their tenth anniversaries. This essay is a personal reflection on some of the achievements and lessons of that decade. The OCLC-NCSA Metadata Workshop took place in March of 1995, and as we tried to understand what it meant and who would care, D-Lib magazine came into being and offered a natural venue for sharing our work. I recall a certain skepticism when Bill Arms said "We want D-Lib to be the first place people look for the latest developments in digital library research." These were the early days in the evolution of electronic publishing, and the goal was ambitious. By any measure, a decade of high-quality electronic publishing is an auspicious accomplishment, and D-Lib (and its host, CNRI) deserve congratulations for having achieved their goal. I am grateful to have been a contributor. That first DC workshop led to further workshops, a community, a variety of standards in several countries, an ISO standard, a conference series, and an international consortium. Looking back on this evolution is both satisfying and wistful. While I am pleased that the achievements are substantial, the unmet challenges also provide a rich till in which to cultivate insights on the development of digital infrastructure.
  9. Baker, T.: ¬A grammar of Dublin Core (2000) 0.03
    0.03116153 = product of:
      0.06232306 = sum of:
        0.048741527 = weight(_text_:digital in 1236) [ClassicSimilarity], result of:
          0.048741527 = score(doc=1236,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.2465345 = fieldWeight in 1236, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=1236)
        0.013581533 = product of:
          0.027163066 = sum of:
            0.027163066 = weight(_text_:22 in 1236) [ClassicSimilarity], result of:
              0.027163066 = score(doc=1236,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.15476047 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1236)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Dublin Core is often presented as a modern form of catalog card -- a set of elements (and now qualifiers) that describe resources in a complete package. Sometimes it is proposed as an exchange format for sharing records among multiple collections. The founding principle that "every element is optional and repeatable" reinforces the notion that a Dublin Core description is to be taken as a whole. This paper, in contrast, is based on a much different premise: Dublin Core is a language. More precisely, it is a small language for making a particular class of statements about resources. Like natural languages, it has a vocabulary of word-like terms, the two classes of which -- elements and qualifiers -- function within statements like nouns and adjectives; and it has a syntax for arranging elements and qualifiers into statements according to a simple pattern. Whenever tourists order a meal or ask directions in an unfamiliar language, considerate native speakers will spontaneously limit themselves to basic words and simple sentence patterns along the lines of "I am so-and-so" or "This is such-and-such". Linguists call this pidginization. In such situations, a small phrase book or translated menu can be most helpful. By analogy, today's Web has been called an Internet Commons where users and information providers from a wide range of scientific, commercial, and social domains present their information in a variety of incompatible data models and description languages. In this context, Dublin Core presents itself as a metadata pidgin for digital tourists who must find their way in this linguistically diverse landscape. Its vocabulary is small enough to learn quickly, and its basic pattern is easily grasped. It is well-suited to serve as an auxiliary language for digital libraries. This grammar starts by defining terms. It then follows a 200-year-old tradition of English grammar teaching by focusing on the structure of single statements. It concludes by looking at the growing dictionary of Dublin Core vocabulary terms -- its registry, and at how statements can be used to build the metadata equivalent of paragraphs and compositions -- the application profile.
    Date
    26.12.2011 14:01:22
  10. Kunze, J.: ¬A Metadata Kernel for Electronic Permanence (2002) 0.03
    0.025849098 = product of:
      0.10339639 = sum of:
        0.10339639 = weight(_text_:digital in 1107) [ClassicSimilarity], result of:
          0.10339639 = score(doc=1107,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.52297866 = fieldWeight in 1107, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.09375 = fieldNorm(doc=1107)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  11. Lagoze, C.; Hunter, J.: ¬The ABC Ontology and Model (2002) 0.03
    0.025849098 = product of:
      0.10339639 = sum of:
        0.10339639 = weight(_text_:digital in 1282) [ClassicSimilarity], result of:
          0.10339639 = score(doc=1282,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.52297866 = fieldWeight in 1282, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.09375 = fieldNorm(doc=1282)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  12. Lagoze, C.: Keeping Dublin Core simple : Cross-domain discovery or resource description? (2001) 0.02
    0.02199972 = product of:
      0.04399944 = sum of:
        0.030463453 = weight(_text_:digital in 1216) [ClassicSimilarity], result of:
          0.030463453 = score(doc=1216,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.15408406 = fieldWeight in 1216, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
        0.013535989 = weight(_text_:library in 1216) [ClassicSimilarity], result of:
          0.013535989 = score(doc=1216,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.1027101 = fieldWeight in 1216, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
      0.5 = coord(2/4)
    
    Abstract
    Reality is messy. Individuals perceive or define objects differently. Objects may change over time, morphing into new versions of their former selves or into things altogether different. A book can give rise to a translation, derivation, or edition, and these resulting objects are related in complex ways to each other and to the people and contexts in which they were created or transformed. Providing a normalized view of such a messy reality is a precondition for managing information. From the first library catalogs, through Melvil Dewey's Decimal Classification system in the nineteenth century, to today's MARC encoding of AACR2 cataloging rules, libraries have epitomized the process of what David Levy calls "order making", whereby catalogers impose a veneer of regularity on the natural disorder of the artifacts they encounter. The pre-digital library within which the Catalog and its standards evolved was relatively self-contained and controlled. Creating and maintaining catalog records was, and still is, the task of professionals. Today's Web, in contrast, has brought together a diversity of information management communities, with a variety of order-making standards, into what Stuart Weibel has called the Internet Commons. The sheer scale of this context has motivated a search for new ways to describe and index information. Second-generation search engines such as Google can yield astonishingly good search results, while tools such as ResearchIndex for automatic citation indexing and techniques for inferring "Web communities" from constellations of hyperlinks promise even better methods for focusing queries on information from authoritative sources. Such "automated digital libraries," according to Bill Arms, promise to radically reduce the cost of managing information. Alongside the development of such automated methods, there is increasing interest in metadata as a means of imposing pre-defined order on Web content. While the size and changeability of the Web makes professional cataloging impractical, a minimal amount of information ordering, such as that represented by the Dublin Core (DC), may vastly improve the quality of an automatic index at low cost; indeed, recent work suggests that some types of simple description may be generated with little or no human intervention.
  13. Anutariya, C.; Wuwongse, K.; Akama, E.; Nantajeewarawat, E.: RDF Declarative Description (RDD) : A Language for Metadata (2002) 0.02
    0.021540914 = product of:
      0.086163655 = sum of:
        0.086163655 = weight(_text_:digital in 1278) [ClassicSimilarity], result of:
          0.086163655 = score(doc=1278,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 1278, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=1278)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  14. Baker, T.; Dekkers, M.; Heery, R.; Patel, M.; Salokhe, G.: What Terms Does Your Metadata Use? : Application Profiles as Machine-Understandable Narratives (2002) 0.02
    0.021540914 = product of:
      0.086163655 = sum of:
        0.086163655 = weight(_text_:digital in 1279) [ClassicSimilarity], result of:
          0.086163655 = score(doc=1279,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 1279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=1279)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  15. Apps, A.; MacIntyre, R.; Heery, R.; Patel, M.; Salokhe, G.: Zetoc : a Dublin Core Based Current Awareness Service (2002) 0.02
    0.021540914 = product of:
      0.086163655 = sum of:
        0.086163655 = weight(_text_:digital in 1280) [ClassicSimilarity], result of:
          0.086163655 = score(doc=1280,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 1280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=1280)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  16. Greenberg, J.; Pattuelli, M.; Parsia, B.; Robertson, W.: Author-generated Dublin Core Metadata for Web Resources : A Baseline Study in an Organization (2002) 0.02
    0.021540914 = product of:
      0.086163655 = sum of:
        0.086163655 = weight(_text_:digital in 1281) [ClassicSimilarity], result of:
          0.086163655 = score(doc=1281,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 1281, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=1281)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 2(2002) no.2,
  17. McClelland, M.; McArthur, D.; Giersch, S.; Geisler, G.: Challenges for service providers when importing metadata in digital libraries (2002) 0.02
    0.021324418 = product of:
      0.085297674 = sum of:
        0.085297674 = weight(_text_:digital in 565) [ClassicSimilarity], result of:
          0.085297674 = score(doc=565,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.43143538 = fieldWeight in 565, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=565)
      0.25 = coord(1/4)
    
    Abstract
    Much of the usefulness of digital libraries lies in their ability to provide services for data from distributed repositories, and many research projects are investigating frameworks for interoperability. In this paper, we report on the experiences and lessons learned by iLumina after importing IMS metadata. iLumina utilizes the IMS metadata specification, which allows for a rich set of metadata (Dublin Core has a simpler metadata scheme that can be mapped onto a subset of the IMS metadata). Our experiences identify questions regarding intellectual property rights for metadata, protocols for enriched metadata, and tips for designing metadata services.
  18. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.02
    0.018908933 = product of:
      0.037817866 = sum of:
        0.013399946 = weight(_text_:library in 1210) [ClassicSimilarity], result of:
          0.013399946 = score(doc=1210,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.10167781 = fieldWeight in 1210, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1210)
        0.024417918 = product of:
          0.048835836 = sum of:
            0.048835836 = weight(_text_:project in 1210) [ClassicSimilarity], result of:
              0.048835836 = score(doc=1210,freq=4.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.2308349 = fieldWeight in 1210, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Semantic Web activity is a W3C project whose goal is to enable a 'cooperative' Web where machines and humans can exchange electronic content that has clear-cut, unambiguous meaning. This vision is based on the automated sharing of metadata terms across Web applications. The declaration of schemas in metadata registries advance this vision by providing a common approach for the discovery, understanding, and exchange of semantics. However, many of the issues regarding registries are not clear, and ideas vary regarding their scope and purpose. Additionally, registry issues are often difficult to describe and comprehend without a working example. This article will explore the role of metadata registries and will describe three prototypes, written by the Dublin Core Metadata Initiative. The article will outline how the prototypes are being used to demonstrate and evaluate application scope, functional requirements, and technology solutions for metadata registries. Metadata schema registries are, in effect, databases of schemas that can trace an historical line back to shared data dictionaries and the registration process encouraged by the ISO/IEC 11179 community. New impetus for the development of registries has come with the development activities surrounding creation of the Semantic Web. The motivation for establishing registries arises from domain and standardization communities, and from the knowledge management community. Examples of current registry activity include:
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
  19. Cranefield, S.: Networked knowledge representation and exchange using UML and RDF (2001) 0.02
    0.015078641 = product of:
      0.060314562 = sum of:
        0.060314562 = weight(_text_:digital in 5896) [ClassicSimilarity], result of:
          0.060314562 = score(doc=5896,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 5896, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5896)
      0.25 = coord(1/4)
    
    Source
    Journal of digital information. 1(2001) no.8
  20. Baker, T.; Dekkers, M.: Identifying metadata elements with URIs : The CORES resolution (2003) 0.01
    0.006976548 = product of:
      0.027906192 = sum of:
        0.027906192 = product of:
          0.055812385 = sum of:
            0.055812385 = weight(_text_:project in 1199) [ClassicSimilarity], result of:
              0.055812385 = score(doc=1199,freq=4.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.26381132 = fieldWeight in 1199, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1199)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    On 18 November 2002, at a meeting organised by the CORES Project (Information Society Technologies Programme, European Union), several organisations regarded as maintenance authorities for metadata elements achieved consensus on a resolution to assign Uniform Resource Identifiers (URIs) to metadata elements as a useful first step towards the development of mapping infrastructures and interoperability services. The signatories of the CORES Resolution agreed to promote this consensus in their communities and beyond and to implement an action plan in the following six months. Six months having passed, the maintainers of GILS, ONIX, MARC 21, CERIF, DOI, IEEE/LOM, and Dublin Core report on their implementations of the resolution and highlight issues of relevance to establishing good-practice conventions for declaring, identifying, and maintaining metadata elements more generally. In June 2003, the resolution was also endorsed by the maintainers of UNIMARC. The "Resolution on Metadata Element Identifiers", or CORES Resolution, is an agreement among the maintenance organisations for several major metadata standards - GILS, ONIX, MARC 21, UNIMARC, CERIF, DOI®, IEEE/LOM, and Dublin Core - to identify their metadata elements using Uniform Resource Identifiers (URIs). The Uniform Resource Identifier, defined in the IETF RFC 2396 as "a compact string of characters for identifying an abstract or physical resource", has been promoted for use as a universal form of identification by the World Wide Web Consortium. The CORES Resolution, formulated at a meeting organised by the European project CORES in November 2002, included a commitment to publicise the consensus statement to a wider audience of metadata standards initiatives and to implement key points of the agreement within the following six months - specifically, to define URI assignment mechanisms, assign URIs to elements, and formulate policies for the persistence of those URIs. This article marks the passage of six months by reporting on progress made in implementing this common action plan. After presenting the text of the CORES Resolution and its three "clarifications", the article summarises the position of each signatory organisation towards assigning URIs to its metadata elements, noting any practical or strategic problems that may have emerged. These progress reports were based on input from Thomas Baker, José Borbinha, Eliot Christian, Erik Duval, Keith Jeffery, Rebecca Guenther, and Norman Paskin. The article closes with a few general observations about these first steps towards the clarification of shared conventions for the identification of metadata elements and perhaps, one can hope, towards the ultimate goal of improving interoperability among a diversity of metadata communities.