Search (36 results, page 1 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Hubert, G.; Pitarch, Y.; Pinel-Sauvagnat, K.; Tournier, R.; Laporte, L.: TournaRank : when retrieval becomes document competition (2018) 0.03
    0.029238276 = product of:
      0.10233396 = sum of:
        0.033925693 = weight(_text_:based in 5087) [ClassicSimilarity], result of:
          0.033925693 = score(doc=5087,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28829288 = fieldWeight in 5087, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5087)
        0.068408266 = weight(_text_:great in 5087) [ClassicSimilarity], result of:
          0.068408266 = score(doc=5087,freq=2.0), product of:
            0.21992016 = queryWeight, product of:
              5.6307793 = idf(docFreq=430, maxDocs=44218)
              0.03905679 = queryNorm
            0.31105953 = fieldWeight in 5087, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6307793 = idf(docFreq=430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5087)
      0.2857143 = coord(2/7)
    
    Abstract
    Numerous feature-based models have been recently proposed by the information retrieval community. The capability of features to express different relevance facets (query- or document-dependent) can explain such a success story. Such models are most of the time supervised, thus requiring a learning phase. To leverage the advantages of feature-based representations of documents, we propose TournaRank, an unsupervised approach inspired by real-life game and sport competition principles. Documents compete against each other in tournaments using features as evidences of relevance. Tournaments are modeled as a sequence of matches, which involve pairs of documents playing in turn their features. Once a tournament is ended, documents are ranked according to their number of won matches during the tournament. This principle is generic since it can be applied to any collection type. It also provides great flexibility since different alternatives can be considered by changing the tournament type, the match rules, the feature set, or the strategies adopted by documents during matches. TournaRank was experimented on several collections to evaluate our model in different contexts and to compare it with related approaches such as Learning To Rank and fusion ones: the TREC Robust2004 collection for homogeneous documents, the TREC Web2014 (ClueWeb12) collection for heterogeneous web documents, and the LETOR3.0 collection for comparison with supervised feature-based models.
  2. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.02
    0.018710561 = product of:
      0.06548696 = sum of:
        0.044320337 = weight(_text_:based in 1431) [ClassicSimilarity], result of:
          0.044320337 = score(doc=1431,freq=4.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.37662423 = fieldWeight in 1431, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.021166623 = product of:
          0.042333245 = sum of:
            0.042333245 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.042333245 = score(doc=1431,freq=2.0), product of:
                0.13677022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03905679 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
  3. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.01
    0.01497233 = product of:
      0.052403152 = sum of:
        0.039174013 = weight(_text_:based in 664) [ClassicSimilarity], result of:
          0.039174013 = score(doc=664,freq=8.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.33289194 = fieldWeight in 664, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=664)
        0.013229139 = product of:
          0.026458278 = sum of:
            0.026458278 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.026458278 = score(doc=664,freq=2.0), product of:
                0.13677022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03905679 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
  4. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.01
    0.0109416675 = product of:
      0.038295835 = sum of:
        0.019587006 = weight(_text_:based in 2591) [ClassicSimilarity], result of:
          0.019587006 = score(doc=2591,freq=2.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.16644597 = fieldWeight in 2591, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2591)
        0.018708827 = product of:
          0.037417654 = sum of:
            0.037417654 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.037417654 = score(doc=2591,freq=4.0), product of:
                0.13677022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03905679 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  5. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.01
    0.009376042 = product of:
      0.032816146 = sum of:
        0.019587006 = weight(_text_:based in 241) [ClassicSimilarity], result of:
          0.019587006 = score(doc=241,freq=2.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.16644597 = fieldWeight in 241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.013229139 = product of:
          0.026458278 = sum of:
            0.026458278 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.026458278 = score(doc=241,freq=2.0), product of:
                0.13677022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03905679 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
  6. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.01
    0.0075082085 = product of:
      0.052557457 = sum of:
        0.052557457 = weight(_text_:based in 3482) [ClassicSimilarity], result of:
          0.052557457 = score(doc=3482,freq=10.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.44662142 = fieldWeight in 3482, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=3482)
      0.14285715 = coord(1/7)
    
    Abstract
    Formulating high-quality queries is a key aspect of context-based search. However, determining the effectiveness of a query is challenging because multiple objectives, such as high precision and high recall, are usually involved. In this work, we study techniques that can be applied to evolve contextualized queries when the criteria for determining query quality are based on multiple objectives. We report on the results of three different strategies for evolving queries: (a) single-objective, (b) multiobjective with Pareto-based ranking, and (c) multiobjective with aggregative ranking. After a comprehensive evaluation with a large set of topics, we discuss the limitations of the single-objective approach and observe that both the Pareto-based and aggregative strategies are highly effective for evolving topical queries. In particular, our experiments lead us to conclude that the multiobjective techniques are superior to a baseline as well as to well-known and ad hoc query reformulation techniques.
  7. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.01
    0.00625684 = product of:
      0.04379788 = sum of:
        0.04379788 = weight(_text_:based in 1607) [ClassicSimilarity], result of:
          0.04379788 = score(doc=1607,freq=10.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.37218451 = fieldWeight in 1607, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1607)
      0.14285715 = coord(1/7)
    
    Abstract
    Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user-in-the-loop process. In PRF, the top-k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well-established baseline. However, the performance of Rocchio-based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio-based PRF, including image-feature representation, the number of top-ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio-based PRF by choosing appropriate representation choices. Our extensive experiments on NUS-WIDE-LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top-20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.
  8. Ye, Z.; Huang, J.X.: ¬A learning to rank approach for quality-aware pseudo-relevance feedback (2016) 0.01
    0.00625684 = product of:
      0.04379788 = sum of:
        0.04379788 = weight(_text_:based in 2855) [ClassicSimilarity], result of:
          0.04379788 = score(doc=2855,freq=10.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.37218451 = fieldWeight in 2855, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2855)
      0.14285715 = coord(1/7)
    
    Abstract
    Pseudo relevance feedback (PRF) has shown to be effective in ad hoc information retrieval. In traditional PRF methods, top-ranked documents are all assumed to be relevant and therefore treated equally in the feedback process. However, the performance gain brought by each document is different as showed in our preliminary experiments. Thus, it is more reasonable to predict the performance gain brought by each candidate feedback document in the process of PRF. We define the quality level (QL) and then use this information to adjust the weights of feedback terms in these documents. Unlike previous work, we do not make any explicit relevance assumption and we go beyond just selecting "good" documents for PRF. We propose a quality-based PRF framework, in which two quality-based assumptions are introduced. Particularly, two different strategies, relevance-based QL (RelPRF) and improvement-based QL (ImpPRF) are presented to estimate the QL of each feedback document. Based on this, we select a set of heterogeneous document-level features and apply a learning approach to evaluate the QL of each feedback document. Extensive experiments on standard TREC (Text REtrieval Conference) test collections show that our proposed model performs robustly and outperforms strong baselines significantly.
  9. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.01
    0.005815833 = product of:
      0.04071083 = sum of:
        0.04071083 = weight(_text_:based in 4577) [ClassicSimilarity], result of:
          0.04071083 = score(doc=4577,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.34595144 = fieldWeight in 4577, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=4577)
      0.14285715 = coord(1/7)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
  10. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.01
    0.005596288 = product of:
      0.039174013 = sum of:
        0.039174013 = weight(_text_:based in 1338) [ClassicSimilarity], result of:
          0.039174013 = score(doc=1338,freq=8.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.33289194 = fieldWeight in 1338, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
      0.14285715 = coord(1/7)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
  11. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.01
    0.0050054723 = product of:
      0.035038304 = sum of:
        0.035038304 = weight(_text_:based in 4459) [ClassicSimilarity], result of:
          0.035038304 = score(doc=4459,freq=10.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.2977476 = fieldWeight in 4459, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=4459)
      0.14285715 = coord(1/7)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
  12. He, J.; Meij, E.; Rijke, M. de: Result diversification based on query-specific cluster ranking (2011) 0.00
    0.0048465277 = product of:
      0.033925693 = sum of:
        0.033925693 = weight(_text_:based in 4355) [ClassicSimilarity], result of:
          0.033925693 = score(doc=4355,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28829288 = fieldWeight in 4355, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4355)
      0.14285715 = coord(1/7)
    
    Abstract
    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification is restricted to documents belonging to clusters that potentially contain a high percentage of relevant documents. Empirical results show that the proposed framework improves the performance of several existing diversification methods. The framework also gives rise to a simple yet effective cluster-based approach to result diversification that selects documents from different clusters to be included in a ranked list in a round robin fashion. We describe a set of experiments aimed at thoroughly analyzing the behavior of the two main components of the proposed diversification framework, ranking and selecting clusters for diversification. Both components have a crucial impact on the overall performance of our framework, but ranking clusters plays a more important role than selecting clusters. We also examine properties that clusters should have in order for our diversification framework to be effective. Most relevant documents should be contained in a small number of high-quality clusters, while there should be no dominantly large clusters. Also, documents from these high-quality clusters should have a diverse content. These properties are strongly correlated with the overall performance of the proposed diversification framework.
  13. Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words : bigram-enhanced context-dependent term weights (2014) 0.00
    0.0048465277 = product of:
      0.033925693 = sum of:
        0.033925693 = weight(_text_:based in 1283) [ClassicSimilarity], result of:
          0.033925693 = score(doc=1283,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28829288 = fieldWeight in 1283, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1283)
      0.14285715 = coord(1/7)
    
    Abstract
    While term independence is a widely held assumption in most of the established information retrieval approaches, it is clearly not true and various works in the past have investigated a relaxation of the assumption. One approach is to use n-grams in document representation instead of unigrams. However, the majority of early works on n-grams obtained only modest performance improvement. On the other hand, the use of information based on supporting terms or "contexts" of queries has been found to be promising. In particular, recent studies showed that using new context-dependent term weights improved the performance of relevance feedback (RF) retrieval compared with using traditional bag-of-words BM25 term weights. Calculation of the new term weights requires an estimation of the local probability of relevance of each query term occurrence. In previous studies, the estimation of this probability was based on unigrams that occur in the neighborhood of a query term. We explore an integration of the n-gram and context approaches by computing context-dependent term weights based on a mixture of unigrams and bigrams. Extensive experiments are performed using the title queries of the Text Retrieval Conference (TREC)-6, TREC-7, TREC-8, and TREC-2005 collections, for RF with relevance judgment of either the top 10 or top 20 documents of an initial retrieval. We identify some crucial elements needed in the use of bigrams in our methods, such as proper inverse document frequency (IDF) weighting of the bigrams and noise reduction by pruning bigrams with large document frequency values. We show that enhancing context-dependent term weights with bigrams is effective in further improving retrieval performance.
  14. Ozdemiray, A.M.; Altingovde, I.S.: Explicit search result diversification using score and rank aggregation methods (2015) 0.00
    0.0048465277 = product of:
      0.033925693 = sum of:
        0.033925693 = weight(_text_:based in 1856) [ClassicSimilarity], result of:
          0.033925693 = score(doc=1856,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28829288 = fieldWeight in 1856, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.14285715 = coord(1/7)
    
    Abstract
    Search result diversification is one of the key techniques to cope with the ambiguous and underspecified information needs of web users. In the last few years, strategies that are based on the explicit knowledge of query aspects emerged as highly effective ways of diversifying search results. Our contributions in this article are two-fold. First, we extensively evaluate the performance of a state-of-the-art explicit diversification strategy and pin-point its potential weaknesses. We propose basic yet novel optimizations to remedy these weaknesses and boost the performance of this algorithm. As a second contribution, inspired by the success of the current diversification strategies that exploit the relevance of the candidate documents to individual query aspects, we cast the diversification problem into the problem of ranking aggregation. To this end, we propose to materialize the re-rankings of the candidate documents for each query aspect and then merge these rankings by adapting the score(-based) and rank(-based) aggregation methods. Our extensive experimental evaluations show that certain ranking aggregation methods are superior to existing explicit diversification strategies in terms of diversification effectiveness. Furthermore, these ranking aggregation methods have lower computational complexity than the state-of-the-art diversification strategies.
  15. Zhu, J.; Han, L.; Gou, Z.; Yuan, X.: ¬A fuzzy clustering-based denoising model for evaluating uncertainty in collaborative filtering recommender systems (2018) 0.00
    0.0048465277 = product of:
      0.033925693 = sum of:
        0.033925693 = weight(_text_:based in 4460) [ClassicSimilarity], result of:
          0.033925693 = score(doc=4460,freq=6.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28829288 = fieldWeight in 4460, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4460)
      0.14285715 = coord(1/7)
    
    Abstract
    Recommender systems are effective in predicting the most suitable products for users, such as movies and books. To facilitate personalized recommendations, the quality of item ratings should be guaranteed. However, a few ratings might not be accurate enough due to the uncertainty of user behavior and are referred to as natural noise. In this article, we present a novel fuzzy clustering-based method for detecting noisy ratings. The entropy of a subset of the original ratings dataset is used to indicate the data-driven uncertainty, and evaluation metrics are adopted to represent the prediction-driven uncertainty. After the repetition of resampling and the execution of a recommendation algorithm, the entropy and evaluation metrics vectors are obtained and are empirically categorized to identify the proportion of the potential noise. Then, the fuzzy C-means-based denoising (FCMD) algorithm is performed to verify the natural noise under the assumption that natural noise is primarily the result of the exceptional behavior of users. Finally, a case study is performed using two real-world datasets. The experimental results show that our proposal outperforms previous proposals and has an advantage in dealing with natural noise.
  16. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.00
    0.0047486075 = product of:
      0.03324025 = sum of:
        0.03324025 = weight(_text_:based in 3469) [ClassicSimilarity], result of:
          0.03324025 = score(doc=3469,freq=4.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28246817 = fieldWeight in 3469, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=3469)
      0.14285715 = coord(1/7)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
  17. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.00
    0.0047486075 = product of:
      0.03324025 = sum of:
        0.03324025 = weight(_text_:based in 4348) [ClassicSimilarity], result of:
          0.03324025 = score(doc=4348,freq=4.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28246817 = fieldWeight in 4348, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=4348)
      0.14285715 = coord(1/7)
    
    Abstract
    Ranking authors is vital for identifying a researcher's impact and standing within a scientific field. There are many different ranking methods (e.g., citations, publications, h-index, PageRank, and weighted PageRank), but most of them are topic-independent. This paper proposes topic-dependent ranks based on the combination of a topic model and a weighted PageRank algorithm. The author-conference-topic (ACT) model was used to extract topic distribution of individual authors. Two ways for combining the ACT model with the PageRank algorithm are proposed: simple combination (I_PR) or using a topic distribution as a weighted vector for PageRank (PR_t). Information retrieval was chosen as the test field and representative authors for different topics at different time phases were identified. Principal component analysis (PCA) was applied to analyze the ranking difference between I_PR and PR_t.
  18. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0047486075 = product of:
      0.03324025 = sum of:
        0.03324025 = weight(_text_:based in 2799) [ClassicSimilarity], result of:
          0.03324025 = score(doc=2799,freq=4.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.28246817 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.14285715 = coord(1/7)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
  19. Dadashkarimia, J.; Shakery, A.; Failia, H.; Zamani, H.: ¬An expectation-maximization algorithm for query translation based on pseudo-relevant documents (2017) 0.00
    0.00447703 = product of:
      0.03133921 = sum of:
        0.03133921 = weight(_text_:based in 3296) [ClassicSimilarity], result of:
          0.03133921 = score(doc=3296,freq=8.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.26631355 = fieldWeight in 3296, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=3296)
      0.14285715 = coord(1/7)
    
    Abstract
    Query translation in cross-language information retrieval (CLIR) can be done by employing dictionaries, aligned corpora, or machine translators. Scarcity of aligned corpora for various domains in many language pairs intensifies the importance of dictionary-based CLIR which motivates us to use only a bilingual dictionary and two independent collections in source and target languages for query translation. We exploit pseudo-relevant documents for a given query in the source language and pseudo-relevant documents for a translation of the query in the target language with a proposed expectation-maximization algorithm for improving query translation. The proposed method (called EM4QT) assumes that each target term either is translated from the source pseudo-relevant documents or has come from a noisy collection. Since EM4QT does not directly consider term coherency, which is defined as fluency of the target translation, we investigate a crucial question: can EM4QT be improved using either coherency-based methods or token-to-token translation ones? To address this question, we combine different translation models via simple linear interpolation and a proposed divergence minimization method. Evaluations over four CLEF collections in Persian, French, Spanish, and German indicate that EM4QT significantly outperforms competitive baselines in all the collections. Our experiments also reveal that since EM4QT indirectly considers term coherency, combining the method with coherency-based models cannot significantly improve the retrieval performance. On the other hand, investigating the query-by-query results supports the view that EM4QT usually gives a relatively high weight to one translation and its combination with the proposed token-to-token translation model, which is obtained by running EM4QT for each query term separately, soothes the effect and reaches better results for many queries. Comparing the method with a competitive word-embedding baseline reveals the superiority of the proposed model.
  20. Lee, J.-T.; Seo, J.; Jeon, J.; Rim, H.-C.: Sentence-based relevance flow analysis for high accuracy retrieval (2011) 0.00
    0.003957173 = product of:
      0.02770021 = sum of:
        0.02770021 = weight(_text_:based in 4746) [ClassicSimilarity], result of:
          0.02770021 = score(doc=4746,freq=4.0), product of:
            0.11767787 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03905679 = queryNorm
            0.23539014 = fieldWeight in 4746, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4746)
      0.14285715 = coord(1/7)
    
    Abstract
    Traditional ranking models for information retrieval lack the ability to make a clear distinction between relevant and nonrelevant documents at top ranks if both have similar bag-of-words representations with regard to a user query. We aim to go beyond the bag-of-words approach to document ranking in a new perspective, by representing each document as a sequence of sentences. We begin with an assumption that relevant documents are distinguishable from nonrelevant ones by sequential patterns of relevance degrees of sentences to a query. We introduce the notion of relevance flow, which refers to a stream of sentence-query relevance within a document. We then present a framework to learn a function for ranking documents effectively based on various features extracted from their relevance flows and leverage the output to enhance existing retrieval models. We validate the effectiveness of our approach by performing a number of retrieval experiments on three standard test collections, each comprising a different type of document: news articles, medical references, and blog posts. Experimental results demonstrate that the proposed approach can improve the retrieval performance at the top ranks significantly as compared with the state-of-the-art retrieval models regardless of document type.