Search (50 results, page 1 of 3)

  • × theme_ss:"Retrievalalgorithmen"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Zhang, W.; Yoshida, T.; Tang, X.: ¬A comparative study of TF*IDF, LSI and multi-words for text classification (2011) 0.03
    0.027948596 = product of:
      0.08384579 = sum of:
        0.050336715 = weight(_text_:applications in 1165) [ClassicSimilarity], result of:
          0.050336715 = score(doc=1165,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 1165, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=1165)
        0.0089812735 = weight(_text_:of in 1165) [ClassicSimilarity], result of:
          0.0089812735 = score(doc=1165,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.14660224 = fieldWeight in 1165, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1165)
        0.0245278 = weight(_text_:systems in 1165) [ClassicSimilarity], result of:
          0.0245278 = score(doc=1165,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 1165, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1165)
      0.33333334 = coord(3/9)
    
    Abstract
    One of the main themes in text mining is text representation, which is fundamental and indispensable for text-based intellegent information processing. Generally, text representation inludes two tasks: indexing and weighting. This paper has comparatively studied TF*IDF, LSI and multi-word for text representation. We used a Chinese and an English document collection to respectively evaluate the three methods in information retreival and text categorization. Experimental results have demonstrated that in text categorization, LSI has better performance than other methods in both document collections. Also, LSI has produced the best performance in retrieving English documents. This outcome has shown that LSI has both favorable semantic and statistical quality and is different with the claim that LSI can not produce discriminative power for indexing.
    Source
    Expert-systems with applications. 38(2011) no.3, S.2758-2765
  2. González-Ibáñez, R.; Esparza-Villamán, A.; Vargas-Godoy, J.C.; Shah, C.: ¬A comparison of unimodal and multimodal models for implicit detection of relevance in interactive IR (2019) 0.03
    0.026646521 = product of:
      0.07993956 = sum of:
        0.041947264 = weight(_text_:applications in 5417) [ClassicSimilarity], result of:
          0.041947264 = score(doc=5417,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 5417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5417)
        0.017552461 = weight(_text_:of in 5417) [ClassicSimilarity], result of:
          0.017552461 = score(doc=5417,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 5417, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5417)
        0.020439833 = weight(_text_:systems in 5417) [ClassicSimilarity], result of:
          0.020439833 = score(doc=5417,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 5417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5417)
      0.33333334 = coord(3/9)
    
    Abstract
    Implicit detection of relevance has been approached by many during the last decade. From the use of individual measures to the use of multiple features from different sources (multimodality), studies have shown the feasibility to automatically detect whether a document is relevant. Despite promising results, it is not clear yet to what extent multimodality constitutes an effective approach compared to unimodality. In this article, we hypothesize that it is possible to build unimodal models capable of outperforming multimodal models in the detection of perceived relevance. To test this hypothesis, we conducted three experiments to compare unimodal and multimodal classification models built using a combination of 24 features. Our classification experiments showed that a univariate unimodal model based on the left-click feature supports our hypothesis. On the other hand, our prediction experiment suggests that multimodality slightly improves early classification compared to the best unimodal models. Based on our results, we argue that the feasibility for practical applications of state-of-the-art multimodal approaches may be strongly constrained by technology, cultural, ethical, and legal aspects, in which case unimodality may offer a better alternative today for supporting relevance detection in interactive information retrieval systems.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.11, S.1223-1235
  3. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.02
    0.021741673 = product of:
      0.06522502 = sum of:
        0.017552461 = weight(_text_:of in 2591) [ClassicSimilarity], result of:
          0.017552461 = score(doc=2591,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 2591, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2591)
        0.02890629 = weight(_text_:systems in 2591) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2591,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2591, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2591)
        0.018766273 = product of:
          0.037532546 = sum of:
            0.037532546 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.037532546 = score(doc=2591,freq=4.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
    Source
    Aslib journal of information management. 67(2015) no.6, S.700-714
  4. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.02
    0.020995347 = product of:
      0.09447906 = sum of:
        0.08389453 = weight(_text_:applications in 928) [ClassicSimilarity], result of:
          0.08389453 = score(doc=928,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
        0.010584532 = weight(_text_:of in 928) [ClassicSimilarity], result of:
          0.010584532 = score(doc=928,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
      0.22222222 = coord(2/9)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
  5. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.02
    0.019909505 = product of:
      0.05972851 = sum of:
        0.017552461 = weight(_text_:of in 241) [ClassicSimilarity], result of:
          0.017552461 = score(doc=241,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 241, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.02890629 = weight(_text_:systems in 241) [ClassicSimilarity], result of:
          0.02890629 = score(doc=241,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 241, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.026539518 = score(doc=241,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.948-966
  6. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.01
    0.012897649 = product of:
      0.05803942 = sum of:
        0.015556021 = weight(_text_:of in 3469) [ClassicSimilarity], result of:
          0.015556021 = score(doc=3469,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 3469, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3469)
        0.042483397 = weight(_text_:systems in 3469) [ClassicSimilarity], result of:
          0.042483397 = score(doc=3469,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 3469, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3469)
      0.22222222 = coord(2/9)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1081-1091
  7. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.01
    0.012849791 = product of:
      0.05782406 = sum of:
        0.041947264 = weight(_text_:applications in 2696) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2696,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
        0.015876798 = weight(_text_:of in 2696) [ClassicSimilarity], result of:
          0.015876798 = score(doc=2696,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 2696, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.22222222 = coord(2/9)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Source
    International journal of computer applications. 129(2015) no.5, S12-15
  8. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.01
    0.0113586085 = product of:
      0.05111374 = sum of:
        0.041947264 = weight(_text_:applications in 3472) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3472,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3472, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
        0.009166474 = weight(_text_:of in 3472) [ClassicSimilarity], result of:
          0.009166474 = score(doc=3472,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.1496253 = fieldWeight in 3472, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
      0.22222222 = coord(2/9)
    
    Abstract
    The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combine multiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned combine-then-rank and rank-then-combine approaches, the authors propose a novel rank-learn-combine ranking framework, called Interactive Ranking (iRANK), which allows two base rankers to teach each other before combination during the ranking process by providing their own ranking results as feedback to the others to boost the ranking performance. This mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The overall performance is improved by the enhancement of the base rankers through the mutual learning mechanism. The authors further design two ranking refinement strategies to efficiently and effectively use the feedback based on reasonable assumptions and rational analysis. Although iRANK is applicable to many applications, as a case study, they apply this framework to the sentence ranking problem in query-focused summarization and evaluate its effectiveness on the DUC 2005 and 2006 data sets. The results are encouraging with consistent and promising improvements.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1232-1243
  9. Koumenides, C.L.; Shadbolt, N.R.: Ranking methods for entity-oriented semantic web search (2014) 0.01
    0.010864041 = product of:
      0.048888184 = sum of:
        0.014200641 = weight(_text_:of in 1280) [ClassicSimilarity], result of:
          0.014200641 = score(doc=1280,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 1280, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1280)
        0.034687545 = weight(_text_:systems in 1280) [ClassicSimilarity], result of:
          0.034687545 = score(doc=1280,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 1280, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1280)
      0.22222222 = coord(2/9)
    
    Abstract
    This article provides a technical review of semantic search methods used to support text-based search over formal Semantic Web knowledge bases. Our focus is on ranking methods and auxiliary processes explored by existing semantic search systems, outlined within broad areas of classification. We present reflective examples from the literature in some detail, which should appeal to readers interested in a deeper perspective on the various methods and systems implemented in the outlined literature. The presentation covers graph exploration and propagation methods, adaptations of classic probabilistic retrieval models, and query-independent link analysis via flexible extensions to the PageRank algorithm. Future research directions are discussed, including development of more cohesive retrieval models to unlock further potentials and uses, data indexing schemes, integration with user interfaces, and building community consensus for more systematic evaluation and gradual development.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1091-1106
  10. Zhu, J.; Han, L.; Gou, Z.; Yuan, X.: ¬A fuzzy clustering-based denoising model for evaluating uncertainty in collaborative filtering recommender systems (2018) 0.01
    0.010142646 = product of:
      0.045641907 = sum of:
        0.016735615 = weight(_text_:of in 4460) [ClassicSimilarity], result of:
          0.016735615 = score(doc=4460,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 4460, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4460)
        0.02890629 = weight(_text_:systems in 4460) [ClassicSimilarity], result of:
          0.02890629 = score(doc=4460,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 4460, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4460)
      0.22222222 = coord(2/9)
    
    Abstract
    Recommender systems are effective in predicting the most suitable products for users, such as movies and books. To facilitate personalized recommendations, the quality of item ratings should be guaranteed. However, a few ratings might not be accurate enough due to the uncertainty of user behavior and are referred to as natural noise. In this article, we present a novel fuzzy clustering-based method for detecting noisy ratings. The entropy of a subset of the original ratings dataset is used to indicate the data-driven uncertainty, and evaluation metrics are adopted to represent the prediction-driven uncertainty. After the repetition of resampling and the execution of a recommendation algorithm, the entropy and evaluation metrics vectors are obtained and are empirically categorized to identify the proportion of the potential noise. Then, the fuzzy C-means-based denoising (FCMD) algorithm is performed to verify the natural noise under the assumption that natural noise is primarily the result of the exceptional behavior of users. Finally, a case study is performed using two real-world datasets. The experimental results show that our proposal outperforms previous proposals and has an advantage in dealing with natural noise.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1109-1121
  11. Van der Veer Martens, B.; Fleet, C. van: Opening the black box of "relevance work" : a domain analysis (2012) 0.01
    0.010131279 = product of:
      0.045590755 = sum of:
        0.021062955 = weight(_text_:of in 247) [ClassicSimilarity], result of:
          0.021062955 = score(doc=247,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 247, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=247)
        0.0245278 = weight(_text_:systems in 247) [ClassicSimilarity], result of:
          0.0245278 = score(doc=247,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=247)
      0.22222222 = coord(2/9)
    
    Abstract
    In response to Hjørland's recent call for a reconceptualization of the foundations of relevance, we suggest that the sociocognitive aspects of intermediation by information agencies, such as archives and libraries, are a necessary and unexplored part of the infrastructure of the subject knowledge domains central to his recommended "view of relevance informed by a social paradigm" (2010, p. 217). From a comparative analysis of documents from 39 graduate-level introductory courses in archives, reference, and strategic/competitive intelligence taught in 13 American Library Association-accredited library and information science (LIS) programs, we identify four defining sociocognitive dimensions of "relevance work" in information agencies within Hjørland's proposed framework for relevance: tasks, time, systems, and assessors. This study is intended to supply sociocognitive content from within the relevance work domain to support further domain analytic research, and to emphasize the importance of intermediary relevance work for all subject knowledge domains.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.936-947
  12. Liu, X.; Turtle, H.: Real-time user interest modeling for real-time ranking (2013) 0.01
    0.009184495 = product of:
      0.041330226 = sum of:
        0.016802425 = weight(_text_:of in 1035) [ClassicSimilarity], result of:
          0.016802425 = score(doc=1035,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 1035, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
        0.0245278 = weight(_text_:systems in 1035) [ClassicSimilarity], result of:
          0.0245278 = score(doc=1035,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 1035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
      0.22222222 = coord(2/9)
    
    Abstract
    User interest as a very dynamic information need is often ignored in most existing information retrieval systems. In this research, we present the results of experiments designed to evaluate the performance of a real-time interest model (RIM) that attempts to identify the dynamic and changing query level interests regarding social media outputs. Unlike most existing ranking methods, our ranking approach targets calculation of the probability that user interest in the content of the document is subject to very dynamic user interest change. We describe 2 formulations of the model (real-time interest vector space and real-time interest language model) stemming from classical relevance ranking methods and develop a novel methodology for evaluating the performance of RIM using Amazon Mechanical Turk to collect (interest-based) relevance judgments on a daily basis. Our results show that the model usually, although not always, performs better than baseline results obtained from commercial web search engines. We identify factors that affect RIM performance and outline plans for future research.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.8, S.1557-1576
  13. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.01
    0.008942596 = product of:
      0.04024168 = sum of:
        0.019801848 = weight(_text_:of in 278) [ClassicSimilarity], result of:
          0.019801848 = score(doc=278,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 278, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=278)
        0.020439833 = weight(_text_:systems in 278) [ClassicSimilarity], result of:
          0.020439833 = score(doc=278,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 278, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=278)
      0.22222222 = coord(2/9)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1383-1397
  14. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.01
    0.008907516 = product of:
      0.04008382 = sum of:
        0.015556021 = weight(_text_:of in 101) [ClassicSimilarity], result of:
          0.015556021 = score(doc=101,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 101, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=101)
        0.0245278 = weight(_text_:systems in 101) [ClassicSimilarity], result of:
          0.0245278 = score(doc=101,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=101)
      0.22222222 = coord(2/9)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
  15. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.01
    0.007977327 = product of:
      0.035897974 = sum of:
        0.014666359 = weight(_text_:of in 1431) [ClassicSimilarity], result of:
          0.014666359 = score(doc=1431,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23940048 = fieldWeight in 1431, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.042463228 = score(doc=1431,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943
  16. Nunes, S.; Ribeiro, C.; David, G.: Term weighting based on document revision history (2011) 0.01
    0.0076537454 = product of:
      0.034441855 = sum of:
        0.0140020205 = weight(_text_:of in 4946) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=4946,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 4946, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4946)
        0.020439833 = weight(_text_:systems in 4946) [ClassicSimilarity], result of:
          0.020439833 = score(doc=4946,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 4946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4946)
      0.22222222 = coord(2/9)
    
    Abstract
    In real-world information retrieval systems, the underlying document collection is rarely stable or definitive. This work is focused on the study of signals extracted from the content of documents at different points in time for the purpose of weighting individual terms in a document. The basic idea behind our proposals is that terms that have existed for a longer time in a document should have a greater weight. We propose 4 term weighting functions that use each document's history to estimate a current term score. To evaluate this thesis, we conduct 3 independent experiments using a collection of documents sampled from Wikipedia. In the first experiment, we use data from Wikipedia to judge each set of terms. In a second experiment, we use an external collection of tags from a popular social bookmarking service as a gold standard. In the third experiment, we crowdsource user judgments to collect feedback on term preference. Across all experiments results consistently support our thesis. We show that temporally aware measures, specifically the proposed revision term frequency and revision term frequency span, outperform a term-weighting measure based on raw term frequency alone.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.12, S.2471-2478
  17. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.01
    0.0066089686 = product of:
      0.029740358 = sum of:
        0.013388492 = weight(_text_:of in 4459) [ClassicSimilarity], result of:
          0.013388492 = score(doc=4459,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21854173 = fieldWeight in 4459, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4459)
        0.016351866 = weight(_text_:systems in 4459) [ClassicSimilarity], result of:
          0.016351866 = score(doc=4459,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 4459, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=4459)
      0.22222222 = coord(2/9)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1095-1108
  18. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.01
    0.006275233 = product of:
      0.028238548 = sum of:
        0.014968789 = weight(_text_:of in 664) [ClassicSimilarity], result of:
          0.014968789 = score(doc=664,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 664, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=664)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.026539518 = score(doc=664,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.500-515
  19. Behnert, C.; Plassmeier, K.; Borst, T.; Lewandowski, D.: Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme (2019) 0.01
    0.005298417 = product of:
      0.047685754 = sum of:
        0.047685754 = weight(_text_:software in 5023) [ClassicSimilarity], result of:
          0.047685754 = score(doc=5023,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30681872 = fieldWeight in 5023, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5023)
      0.11111111 = coord(1/9)
    
    Abstract
    Dieser Beitrag beschreibt eine Studie zur Entwicklung und Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme. Dazu wurden mögliche Faktoren für das Relevanzranking ausgehend von den Verfahren in Websuchmaschinen identifiziert, auf den Bibliothekskontext übertragen und systematisch evaluiert. Mithilfe eines Testsystems, das auf dem ZBW-Informationsportal EconBiz und einer web-basierten Software zur Evaluierung von Suchsystemen aufsetzt, wurden verschiedene Relevanzfaktoren (z. B. Popularität in Verbindung mit Aktualität) getestet. Obwohl die getesteten Rankingverfahren auf einer theoretischen Ebene divers sind, konnten keine einheitlichen Verbesserungen gegenüber den Baseline-Rankings gemessen werden. Die Ergebnisse deuten darauf hin, dass eine Adaptierung des Rankings auf individuelle Nutzer bzw. Nutzungskontexte notwendig sein könnte, um eine höhere Performance zu erzielen.
  20. Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words : bigram-enhanced context-dependent term weights (2014) 0.00
    0.0028200909 = product of:
      0.025380818 = sum of:
        0.025380818 = weight(_text_:of in 1283) [ClassicSimilarity], result of:
          0.025380818 = score(doc=1283,freq=46.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.41429368 = fieldWeight in 1283, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1283)
      0.11111111 = coord(1/9)
    
    Abstract
    While term independence is a widely held assumption in most of the established information retrieval approaches, it is clearly not true and various works in the past have investigated a relaxation of the assumption. One approach is to use n-grams in document representation instead of unigrams. However, the majority of early works on n-grams obtained only modest performance improvement. On the other hand, the use of information based on supporting terms or "contexts" of queries has been found to be promising. In particular, recent studies showed that using new context-dependent term weights improved the performance of relevance feedback (RF) retrieval compared with using traditional bag-of-words BM25 term weights. Calculation of the new term weights requires an estimation of the local probability of relevance of each query term occurrence. In previous studies, the estimation of this probability was based on unigrams that occur in the neighborhood of a query term. We explore an integration of the n-gram and context approaches by computing context-dependent term weights based on a mixture of unigrams and bigrams. Extensive experiments are performed using the title queries of the Text Retrieval Conference (TREC)-6, TREC-7, TREC-8, and TREC-2005 collections, for RF with relevance judgment of either the top 10 or top 20 documents of an initial retrieval. We identify some crucial elements needed in the use of bigrams in our methods, such as proper inverse document frequency (IDF) weighting of the bigrams and noise reduction by pruning bigrams with large document frequency values. We show that enhancing context-dependent term weights with bigrams is effective in further improving retrieval performance.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1134-1148

Languages

  • e 47
  • d 3
  • More… Less…