Search (21 results, page 1 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2010 TO 2020}
  1. Lee, J.; Min, J.-K.; Oh, A.; Chung, C.-W.: Effective ranking and search techniques for Web resources considering semantic relationships (2014) 0.03
    0.02841502 = product of:
      0.09945257 = sum of:
        0.03718255 = weight(_text_:processing in 2670) [ClassicSimilarity], result of:
          0.03718255 = score(doc=2670,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.22363065 = fieldWeight in 2670, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2670)
        0.062270015 = weight(_text_:techniques in 2670) [ClassicSimilarity], result of:
          0.062270015 = score(doc=2670,freq=4.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.34415868 = fieldWeight in 2670, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2670)
      0.2857143 = coord(2/7)
    
    Abstract
    On the Semantic Web, the types of resources and the semantic relationships between resources are defined in an ontology. By using that information, the accuracy of information retrieval can be improved. In this paper, we present effective ranking and search techniques considering the semantic relationships in an ontology. Our technique retrieves top-k resources which are the most relevant to query keywords through the semantic relationships. To do this, we propose a weighting measure for the semantic relationship. Based on this measure, we propose a novel ranking method which considers the number of meaningful semantic relationships between a resource and keywords as well as the coverage and discriminating power of keywords. In order to improve the efficiency of the search, we prune the unnecessary search space using the length and weight thresholds of the semantic relationship path. In addition, we exploit Threshold Algorithm based on an extended inverted index to answer top-k results efficiently. The experimental results using real data sets demonstrate that our retrieval method using the semantic information generates accurate results efficiently compared to the traditional methods.
    Source
    Information processing and management. 50(2014) no.1, S.132-155
  2. Liu, R.-L.; Huang, Y.-C.: Ranker enhancement for proximity-based ranking of biomedical texts (2011) 0.02
    0.02320403 = product of:
      0.0812141 = sum of:
        0.03718255 = weight(_text_:processing in 4947) [ClassicSimilarity], result of:
          0.03718255 = score(doc=4947,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.22363065 = fieldWeight in 4947, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4947)
        0.044031553 = weight(_text_:techniques in 4947) [ClassicSimilarity], result of:
          0.044031553 = score(doc=4947,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.24335694 = fieldWeight in 4947, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4947)
      0.2857143 = coord(2/7)
    
    Abstract
    Biomedical decision making often requires relevant evidence from the biomedical literature. Retrieval of the evidence calls for a system that receives a natural language query for a biomedical information need and, among the huge amount of texts retrieved for the query, ranks relevant texts higher for further processing. However, state-of-the-art text rankers have weaknesses in dealing with biomedical queries, which often consist of several correlating concepts and prefer those texts that completely talk about the concepts. In this article, we present a technique, Proximity-Based Ranker Enhancer (PRE), to enhance text rankers by term-proximity information. PRE assesses the term frequency (TF) of each term in the text by integrating three types of term proximity to measure the contextual completeness of query terms appearing in nearby areas in the text being ranked. Therefore, PRE may serve as a preprocessor for (or supplement to) those rankers that consider TF in ranking, without the need to change the algorithms and development processes of the rankers. Empirical evaluation shows that PRE significantly improves various kinds of text rankers, and when compared with several state-of-the-art techniques that enhance rankers by term-proximity information, PRE may more stably and significantly enhance the rankers.
  3. Karisani, P.; Rahgozar, M.; Oroumchian, F.: Transforming LSA space dimensions into a rubric for an automatic assessment and feedback system (2016) 0.02
    0.02320403 = product of:
      0.0812141 = sum of:
        0.03718255 = weight(_text_:processing in 2970) [ClassicSimilarity], result of:
          0.03718255 = score(doc=2970,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.22363065 = fieldWeight in 2970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2970)
        0.044031553 = weight(_text_:techniques in 2970) [ClassicSimilarity], result of:
          0.044031553 = score(doc=2970,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.24335694 = fieldWeight in 2970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2970)
      0.2857143 = coord(2/7)
    
    Abstract
    Pseudo-relevance feedback is the basis of a category of automatic query modification techniques. Pseudo-relevance feedback methods assume the initial retrieved set of documents to be relevant. Then they use these documents to extract more relevant terms for the query or just re-weigh the user's original query. In this paper, we propose a straightforward, yet effective use of pseudo-relevance feedback method in detecting more informative query terms and re-weighting them. The query-by-query analysis of our results indicates that our method is capable of identifying the most important keywords even in short queries. Our main idea is that some of the top documents may contain a closer context to the user's information need than the others. Therefore, re-examining the similarity of those top documents and weighting this set based on their context could help in identifying and re-weighting informative query terms. Our experimental results in standard English and Persian test collections show that our method improves retrieval performance, in terms of MAP criterion, up to 7% over traditional query term re-weighting methods.
    Source
    Information processing and management. 52(2016) no.3, S.478-489
  4. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.01
    0.01307398 = product of:
      0.09151786 = sum of:
        0.09151786 = weight(_text_:techniques in 3482) [ClassicSimilarity], result of:
          0.09151786 = score(doc=3482,freq=6.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.5058079 = fieldWeight in 3482, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=3482)
      0.14285715 = coord(1/7)
    
    Abstract
    Formulating high-quality queries is a key aspect of context-based search. However, determining the effectiveness of a query is challenging because multiple objectives, such as high precision and high recall, are usually involved. In this work, we study techniques that can be applied to evolve contextualized queries when the criteria for determining query quality are based on multiple objectives. We report on the results of three different strategies for evolving queries: (a) single-objective, (b) multiobjective with Pareto-based ranking, and (c) multiobjective with aggregative ranking. After a comprehensive evaluation with a large set of topics, we discuss the limitations of the single-objective approach and observe that both the Pareto-based and aggregative strategies are highly effective for evolving topical queries. In particular, our experiments lead us to conclude that the multiobjective techniques are superior to a baseline as well as to well-known and ad hoc query reformulation techniques.
  5. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.01
    0.013011184 = product of:
      0.09107828 = sum of:
        0.09107828 = weight(_text_:processing in 278) [ClassicSimilarity], result of:
          0.09107828 = score(doc=278,freq=12.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.547781 = fieldWeight in 278, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=278)
      0.14285715 = coord(1/7)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
  6. Habernal, I.; Konopík, M.; Rohlík, O.: Question answering (2012) 0.01
    0.010674859 = product of:
      0.07472401 = sum of:
        0.07472401 = weight(_text_:techniques in 101) [ClassicSimilarity], result of:
          0.07472401 = score(doc=101,freq=4.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.4129904 = fieldWeight in 101, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=101)
      0.14285715 = coord(1/7)
    
    Abstract
    Question Answering is an area of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text in order to provide a more sophisticated and satisfactory response to the user's information needs. For this reason, the authors see question answering as the next step beyond standard information retrieval. In this chapter state of the art question answering is covered focusing on providing an overview of systems, techniques and approaches that are likely to be employed in the next generations of search engines. Special attention is paid to question answering using the World Wide Web as the data source and to question answering exploiting the possibilities of Semantic Web. Considerations about the current issues and prospects for promising future research are also provided.
  7. Fu, X.: Towards a model of implicit feedback for Web search (2010) 0.01
    0.0075482656 = product of:
      0.052837856 = sum of:
        0.052837856 = weight(_text_:techniques in 3310) [ClassicSimilarity], result of:
          0.052837856 = score(doc=3310,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.2920283 = fieldWeight in 3310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=3310)
      0.14285715 = coord(1/7)
    
    Abstract
    This research investigated several important issues in using implicit feedback techniques to assist searchers with difficulties in formulating effective search strategies. It focused on examining the relationship between types of behavioral evidence that can be captured from Web searches and searchers' interests. A carefully crafted observation study was conducted to capture, examine, and elucidate the analytical processes and work practices of human analysts when they simulated the role of an implicit feedback system by trying to infer searchers' interests from behavioral traces. Findings provided rare insight into the complexities and nuances in using behavioral evidence for implicit feedback and led to the proposal of an implicit feedback model for Web search that bridged previous studies on behavioral evidence and implicit feedback measures. A new level of analysis termed an analytical lens emerged from the data and provides a road map for future research on this topic.
  8. Hoenkamp, E.; Bruza, P.: How everyday language can and will boost effective information retrieval (2015) 0.01
    0.0075120106 = product of:
      0.05258407 = sum of:
        0.05258407 = weight(_text_:processing in 2123) [ClassicSimilarity], result of:
          0.05258407 = score(doc=2123,freq=4.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.3162615 = fieldWeight in 2123, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2123)
      0.14285715 = coord(1/7)
    
    Abstract
    Typing 2 or 3 keywords into a browser has become an easy and efficient way to find information. Yet, typing even short queries becomes tedious on ever shrinking (virtual) keyboards. Meanwhile, speech processing is maturing rapidly, facilitating everyday language input. Also, wearable technology can inform users proactively by listening in on their conversations or processing their social media interactions. Given these developments, everyday language may soon become the new input of choice. We present an information retrieval (IR) algorithm specifically designed to accept everyday language. It integrates two paradigms of information retrieval, previously studied in isolation; one directed mainly at the surface structure of language, the other primarily at the underlying meaning. The integration was achieved by a Markov machine that encodes meaning by its transition graph, and surface structure by the language it generates. A rigorous evaluation of the approach showed, first, that it can compete with the quality of existing language models, second, that it is more effective the more verbose the input, and third, as a consequence, that it is promising for an imminent transition from keyword input, where the onus is on the user to formulate concise queries, to a modality where users can express more freely, more informal, and more natural their need for information in everyday language.
  9. Zhang, W.; Yoshida, T.; Tang, X.: ¬A comparative study of TF*IDF, LSI and multi-words for text classification (2011) 0.01
    0.006374152 = product of:
      0.04461906 = sum of:
        0.04461906 = weight(_text_:processing in 1165) [ClassicSimilarity], result of:
          0.04461906 = score(doc=1165,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.26835677 = fieldWeight in 1165, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.046875 = fieldNorm(doc=1165)
      0.14285715 = coord(1/7)
    
    Abstract
    One of the main themes in text mining is text representation, which is fundamental and indispensable for text-based intellegent information processing. Generally, text representation inludes two tasks: indexing and weighting. This paper has comparatively studied TF*IDF, LSI and multi-word for text representation. We used a Chinese and an English document collection to respectively evaluate the three methods in information retreival and text categorization. Experimental results have demonstrated that in text categorization, LSI has better performance than other methods in both document collections. Also, LSI has produced the best performance in retrieving English documents. This outcome has shown that LSI has both favorable semantic and statistical quality and is different with the claim that LSI can not produce discriminative power for indexing.
  10. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.01
    0.006374152 = product of:
      0.04461906 = sum of:
        0.04461906 = weight(_text_:processing in 2799) [ClassicSimilarity], result of:
          0.04461906 = score(doc=2799,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.26835677 = fieldWeight in 2799, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 50(2014) no.2, S.416-425
  11. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.01
    0.006290222 = product of:
      0.044031553 = sum of:
        0.044031553 = weight(_text_:techniques in 3472) [ClassicSimilarity], result of:
          0.044031553 = score(doc=3472,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.24335694 = fieldWeight in 3472, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
      0.14285715 = coord(1/7)
    
    Abstract
    The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combine multiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned combine-then-rank and rank-then-combine approaches, the authors propose a novel rank-learn-combine ranking framework, called Interactive Ranking (iRANK), which allows two base rankers to teach each other before combination during the ranking process by providing their own ranking results as feedback to the others to boost the ranking performance. This mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The overall performance is improved by the enhancement of the base rankers through the mutual learning mechanism. The authors further design two ranking refinement strategies to efficiently and effectively use the feedback based on reasonable assumptions and rational analysis. Although iRANK is applicable to many applications, as a case study, they apply this framework to the sentence ranking problem in query-focused summarization and evaluate its effectiveness on the DUC 2005 and 2006 data sets. The results are encouraging with consistent and promising improvements.
  12. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.01
    0.006290222 = product of:
      0.044031553 = sum of:
        0.044031553 = weight(_text_:techniques in 1338) [ClassicSimilarity], result of:
          0.044031553 = score(doc=1338,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.24335694 = fieldWeight in 1338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
      0.14285715 = coord(1/7)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
  13. Ozdemiray, A.M.; Altingovde, I.S.: Explicit search result diversification using score and rank aggregation methods (2015) 0.01
    0.006290222 = product of:
      0.044031553 = sum of:
        0.044031553 = weight(_text_:techniques in 1856) [ClassicSimilarity], result of:
          0.044031553 = score(doc=1856,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.24335694 = fieldWeight in 1856, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.14285715 = coord(1/7)
    
    Abstract
    Search result diversification is one of the key techniques to cope with the ambiguous and underspecified information needs of web users. In the last few years, strategies that are based on the explicit knowledge of query aspects emerged as highly effective ways of diversifying search results. Our contributions in this article are two-fold. First, we extensively evaluate the performance of a state-of-the-art explicit diversification strategy and pin-point its potential weaknesses. We propose basic yet novel optimizations to remedy these weaknesses and boost the performance of this algorithm. As a second contribution, inspired by the success of the current diversification strategies that exploit the relevance of the candidate documents to individual query aspects, we cast the diversification problem into the problem of ranking aggregation. To this end, we propose to materialize the re-rankings of the candidate documents for each query aspect and then merge these rankings by adapting the score(-based) and rank(-based) aggregation methods. Our extensive experimental evaluations show that certain ranking aggregation methods are superior to existing explicit diversification strategies in terms of diversification effectiveness. Furthermore, these ranking aggregation methods have lower computational complexity than the state-of-the-art diversification strategies.
  14. Liu, X.; Zheng, W.; Fang, H.: ¬An exploration of ranking models and feedback method for related entity finding (2013) 0.01
    0.005311793 = product of:
      0.03718255 = sum of:
        0.03718255 = weight(_text_:processing in 2714) [ClassicSimilarity], result of:
          0.03718255 = score(doc=2714,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.22363065 = fieldWeight in 2714, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2714)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 49(2013) no.5, S.995-1007
  15. Hubert, G.; Pitarch, Y.; Pinel-Sauvagnat, K.; Tournier, R.; Laporte, L.: TournaRank : when retrieval becomes document competition (2018) 0.01
    0.005311793 = product of:
      0.03718255 = sum of:
        0.03718255 = weight(_text_:processing in 5087) [ClassicSimilarity], result of:
          0.03718255 = score(doc=5087,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.22363065 = fieldWeight in 5087, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5087)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 54(2018) no.2, S.252-272
  16. Dadashkarimia, J.; Shakery, A.; Failia, H.; Zamani, H.: ¬An expectation-maximization algorithm for query translation based on pseudo-relevant documents (2017) 0.00
    0.0042494345 = product of:
      0.02974604 = sum of:
        0.02974604 = weight(_text_:processing in 3296) [ClassicSimilarity], result of:
          0.02974604 = score(doc=3296,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.17890452 = fieldWeight in 3296, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.03125 = fieldNorm(doc=3296)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 53(2017) no.2, S.371-387
  17. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.003179864 = product of:
      0.022259047 = sum of:
        0.022259047 = product of:
          0.044518095 = sum of:
            0.044518095 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.044518095 = score(doc=1431,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 8.2014 17:05:18
  18. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.003179864 = product of:
      0.022259047 = sum of:
        0.022259047 = product of:
          0.044518095 = sum of:
            0.044518095 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.044518095 = score(doc=1484,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    13. 9.2014 14:45:22
  19. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.00
    0.0028106293 = product of:
      0.019674404 = sum of:
        0.019674404 = product of:
          0.039348807 = sum of:
            0.039348807 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.039348807 = score(doc=2591,freq=4.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  20. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.00
    0.0019874151 = product of:
      0.013911906 = sum of:
        0.013911906 = product of:
          0.027823811 = sum of:
            0.027823811 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.027823811 = score(doc=241,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    11. 6.2012 14:22:34