Search (15 results, page 1 of 1)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2010 TO 2020}
  1. Walz, J.: Analyse der Übertragbarkeit allgemeiner Rankingfaktoren von Web-Suchmaschinen auf Discovery-Systeme (2018) 0.01
    0.012000851 = product of:
      0.09600681 = sum of:
        0.09600681 = weight(_text_:hochschule in 5744) [ClassicSimilarity], result of:
          0.09600681 = score(doc=5744,freq=2.0), product of:
            0.23689921 = queryWeight, product of:
              6.113391 = idf(docFreq=265, maxDocs=44218)
              0.03875087 = queryNorm
            0.40526438 = fieldWeight in 5744, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.113391 = idf(docFreq=265, maxDocs=44218)
              0.046875 = fieldNorm(doc=5744)
      0.125 = coord(1/8)
    
    Footnote
    Bachelorarbeit Bibliothekswissenschaft, Technische Hochschule Köln.
  2. Van der Veer Martens, B.; Fleet, C. van: Opening the black box of "relevance work" : a domain analysis (2012) 0.01
    0.008651716 = product of:
      0.069213726 = sum of:
        0.069213726 = weight(_text_:work in 247) [ClassicSimilarity], result of:
          0.069213726 = score(doc=247,freq=8.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.4866296 = fieldWeight in 247, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=247)
      0.125 = coord(1/8)
    
    Abstract
    In response to Hjørland's recent call for a reconceptualization of the foundations of relevance, we suggest that the sociocognitive aspects of intermediation by information agencies, such as archives and libraries, are a necessary and unexplored part of the infrastructure of the subject knowledge domains central to his recommended "view of relevance informed by a social paradigm" (2010, p. 217). From a comparative analysis of documents from 39 graduate-level introductory courses in archives, reference, and strategic/competitive intelligence taught in 13 American Library Association-accredited library and information science (LIS) programs, we identify four defining sociocognitive dimensions of "relevance work" in information agencies within Hjørland's proposed framework for relevance: tasks, time, systems, and assessors. This study is intended to supply sociocognitive content from within the relevance work domain to support further domain analytic research, and to emphasize the importance of intermediary relevance work for all subject knowledge domains.
  3. Fu, X.: Towards a model of implicit feedback for Web search (2010) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 3310) [ClassicSimilarity], result of:
          0.034606863 = score(doc=3310,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 3310, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=3310)
      0.125 = coord(1/8)
    
    Abstract
    This research investigated several important issues in using implicit feedback techniques to assist searchers with difficulties in formulating effective search strategies. It focused on examining the relationship between types of behavioral evidence that can be captured from Web searches and searchers' interests. A carefully crafted observation study was conducted to capture, examine, and elucidate the analytical processes and work practices of human analysts when they simulated the role of an implicit feedback system by trying to infer searchers' interests from behavioral traces. Findings provided rare insight into the complexities and nuances in using behavioral evidence for implicit feedback and led to the proposal of an implicit feedback model for Web search that bridged previous studies on behavioral evidence and implicit feedback measures. A new level of analysis termed an analytical lens emerged from the data and provides a road map for future research on this topic.
  4. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 3482) [ClassicSimilarity], result of:
          0.034606863 = score(doc=3482,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 3482, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=3482)
      0.125 = coord(1/8)
    
    Abstract
    Formulating high-quality queries is a key aspect of context-based search. However, determining the effectiveness of a query is challenging because multiple objectives, such as high precision and high recall, are usually involved. In this work, we study techniques that can be applied to evolve contextualized queries when the criteria for determining query quality are based on multiple objectives. We report on the results of three different strategies for evolving queries: (a) single-objective, (b) multiobjective with Pareto-based ranking, and (c) multiobjective with aggregative ranking. After a comprehensive evaluation with a large set of topics, we discuss the limitations of the single-objective approach and observe that both the Pareto-based and aggregative strategies are highly effective for evolving topical queries. In particular, our experiments lead us to conclude that the multiobjective techniques are superior to a baseline as well as to well-known and ad hoc query reformulation techniques.
  5. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 4119) [ClassicSimilarity], result of:
          0.034606863 = score(doc=4119,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 4119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=4119)
      0.125 = coord(1/8)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
  6. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 4349) [ClassicSimilarity], result of:
          0.034606863 = score(doc=4349,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 4349, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=4349)
      0.125 = coord(1/8)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
  7. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 2799) [ClassicSimilarity], result of:
          0.034606863 = score(doc=2799,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 2799, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.125 = coord(1/8)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
  8. Nunes, S.; Ribeiro, C.; David, G.: Term weighting based on document revision history (2011) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 4946) [ClassicSimilarity], result of:
          0.028839052 = score(doc=4946,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 4946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4946)
      0.125 = coord(1/8)
    
    Abstract
    In real-world information retrieval systems, the underlying document collection is rarely stable or definitive. This work is focused on the study of signals extracted from the content of documents at different points in time for the purpose of weighting individual terms in a document. The basic idea behind our proposals is that terms that have existed for a longer time in a document should have a greater weight. We propose 4 term weighting functions that use each document's history to estimate a current term score. To evaluate this thesis, we conduct 3 independent experiments using a collection of documents sampled from Wikipedia. In the first experiment, we use data from Wikipedia to judge each set of terms. In a second experiment, we use an external collection of tags from a popular social bookmarking service as a gold standard. In the third experiment, we crowdsource user judgments to collect feedback on term preference. Across all experiments results consistently support our thesis. We show that temporally aware measures, specifically the proposed revision term frequency and revision term frequency span, outperform a term-weighting measure based on raw term frequency alone.
  9. Ye, Z.; Huang, J.X.: ¬A learning to rank approach for quality-aware pseudo-relevance feedback (2016) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 2855) [ClassicSimilarity], result of:
          0.028839052 = score(doc=2855,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 2855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2855)
      0.125 = coord(1/8)
    
    Abstract
    Pseudo relevance feedback (PRF) has shown to be effective in ad hoc information retrieval. In traditional PRF methods, top-ranked documents are all assumed to be relevant and therefore treated equally in the feedback process. However, the performance gain brought by each document is different as showed in our preliminary experiments. Thus, it is more reasonable to predict the performance gain brought by each candidate feedback document in the process of PRF. We define the quality level (QL) and then use this information to adjust the weights of feedback terms in these documents. Unlike previous work, we do not make any explicit relevance assumption and we go beyond just selecting "good" documents for PRF. We propose a quality-based PRF framework, in which two quality-based assumptions are introduced. Particularly, two different strategies, relevance-based QL (RelPRF) and improvement-based QL (ImpPRF) are presented to estimate the QL of each feedback document. Based on this, we select a set of heterogeneous document-level features and apply a learning approach to evaluate the QL of each feedback document. Extensive experiments on standard TREC (Text REtrieval Conference) test collections show that our proposed model performs robustly and outperforms strong baselines significantly.
  10. Jacucci, G.; Barral, O.; Daee, P.; Wenzel, M.; Serim, B.; Ruotsalo, T.; Pluchino, P.; Freeman, J.; Gamberini, L.; Kaski, S.; Blankertz, B.: Integrating neurophysiologic relevance feedback in intent modeling for information retrieval (2019) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 5356) [ClassicSimilarity], result of:
          0.028839052 = score(doc=5356,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 5356, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5356)
      0.125 = coord(1/8)
    
    Abstract
    The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
  11. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.002625104 = product of:
      0.021000832 = sum of:
        0.021000832 = product of:
          0.042001665 = sum of:
            0.042001665 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.042001665 = score(doc=1431,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    22. 8.2014 17:05:18
  12. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.002625104 = product of:
      0.021000832 = sum of:
        0.021000832 = product of:
          0.042001665 = sum of:
            0.042001665 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.042001665 = score(doc=1484,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    13. 9.2014 14:45:22
  13. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.00
    0.002320286 = product of:
      0.018562287 = sum of:
        0.018562287 = product of:
          0.037124574 = sum of:
            0.037124574 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.037124574 = score(doc=2591,freq=4.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  14. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.00
    0.00164069 = product of:
      0.01312552 = sum of:
        0.01312552 = product of:
          0.02625104 = sum of:
            0.02625104 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.02625104 = score(doc=241,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    11. 6.2012 14:22:34
  15. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.00
    0.00164069 = product of:
      0.01312552 = sum of:
        0.01312552 = product of:
          0.02625104 = sum of:
            0.02625104 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.02625104 = score(doc=664,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    22. 3.2013 19:34:49