Search (8 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.005015969 = product of:
      0.03511178 = sum of:
        0.02942922 = weight(_text_:representation in 4553) [ClassicSimilarity], result of:
          0.02942922 = score(doc=4553,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 4553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.0056825615 = product of:
          0.017047685 = sum of:
            0.017047685 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.017047685 = score(doc=4553,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  2. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.00
    0.0036409218 = product of:
      0.0509729 = sum of:
        0.0509729 = weight(_text_:representation in 51) [ClassicSimilarity], result of:
          0.0509729 = score(doc=51,freq=6.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.44023782 = fieldWeight in 51, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
      0.071428575 = coord(1/14)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  3. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 761) [ClassicSimilarity], result of:
          0.03531506 = score(doc=761,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 761, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=761)
      0.071428575 = coord(1/14)
    
  4. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 3297) [ClassicSimilarity], result of:
          0.02942922 = score(doc=3297,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 3297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
      0.071428575 = coord(1/14)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
  5. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.0019571495 = product of:
      0.027400091 = sum of:
        0.027400091 = product of:
          0.041100137 = sum of:
            0.020642916 = weight(_text_:29 in 4649) [ClassicSimilarity], result of:
              0.020642916 = score(doc=4649,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
            0.02045722 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.02045722 = score(doc=4649,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Date
    29. 7.2011 14:44:56
    26.12.2011 13:40:22
  6. Aslam, S.; Sonkar, S.K.: Semantic Web : an overview (2019) 0.00
    6.553308E-4 = product of:
      0.00917463 = sum of:
        0.00917463 = product of:
          0.027523888 = sum of:
            0.027523888 = weight(_text_:29 in 54) [ClassicSimilarity], result of:
              0.027523888 = score(doc=54,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.31092256 = fieldWeight in 54, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=54)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    10.12.2020 9:29:12
  7. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.00
    6.494356E-4 = product of:
      0.009092098 = sum of:
        0.009092098 = product of:
          0.027276294 = sum of:
            0.027276294 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.027276294 = score(doc=4331,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    15. 3.2011 19:21:22
  8. Firnkes, M.: Schöne neue Welt : der Content der Zukunft wird von Algorithmen bestimmt (2015) 0.00
    4.8707667E-4 = product of:
      0.006819073 = sum of:
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 2118) [ClassicSimilarity], result of:
              0.02045722 = score(doc=2118,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 2118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2118)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    5. 7.2015 22:02:31