Search (82 results, page 2 of 5)

  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Ulrich, W.: Simple Knowledge Organisation System (2007) 0.00
    8.492753E-4 = product of:
      0.025478259 = sum of:
        0.025478259 = weight(_text_:u in 105) [ClassicSimilarity], result of:
          0.025478259 = score(doc=105,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.43413407 = fieldWeight in 105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.09375 = fieldNorm(doc=105)
      0.033333335 = coord(1/30)
    
    Source
    http://cs.uni-muenster.de/u/lammers/EDU/ss07/AgentenSemanticWeb/Abgaben/Ulrich%20Wolfgang%20-%20Vortrag%20-%20SKOS.pdf
  2. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.00
    7.7314035E-4 = product of:
      0.011597104 = sum of:
        0.010615941 = weight(_text_:u in 2208) [ClassicSimilarity], result of:
          0.010615941 = score(doc=2208,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.1808892 = fieldWeight in 2208, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        9.811628E-4 = product of:
          0.002943488 = sum of:
            0.002943488 = weight(_text_:a in 2208) [ClassicSimilarity], result of:
              0.002943488 = score(doc=2208,freq=10.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.14243183 = fieldWeight in 2208, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2208)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Type
    a
  3. OWL Web Ontology Language Guide (2004) 0.00
    7.662347E-4 = product of:
      0.01149352 = sum of:
        0.010615941 = weight(_text_:u in 4687) [ClassicSimilarity], result of:
          0.010615941 = score(doc=4687,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.1808892 = fieldWeight in 4687, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4687)
        8.775785E-4 = product of:
          0.0026327355 = sum of:
            0.0026327355 = weight(_text_:a in 4687) [ClassicSimilarity], result of:
              0.0026327355 = score(doc=4687,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.12739488 = fieldWeight in 4687, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4687)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    The World Wide Web as it is currently constituted resembles a poorly mapped geography. Our insight into the documents and capabilities available are based on keyword searches, abetted by clever use of document connectivity and usage patterns. The sheer mass of this data is unmanageable without powerful tool support. In order to map this terrain more precisely, computational agents require machine-readable descriptions of the content and capabilities of Web accessible resources. These descriptions must be in addition to the human-readable versions of that information. The OWL Web Ontology Language is intended to provide a language that can be used to describe the classes and relations between them that are inherent in Web documents and applications. This document demonstrates the use of the OWL language to - formalize a domain by defining classes and properties of those classes, - define individuals and assert properties about them, and - reason about these classes and individuals to the degree permitted by the formal semantics of the OWL language. The sections are organized to present an incremental definition of a set of classes, properties and individuals, beginning with the fundamentals and proceeding to more complex language components.
    Editor
    Smith, M.K., C. Welty u. D.L. Mc Guinness
  4. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.00
    6.235068E-4 = product of:
      0.009352601 = sum of:
        0.008492753 = weight(_text_:u in 79) [ClassicSimilarity], result of:
          0.008492753 = score(doc=79,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.14471136 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        8.598479E-4 = product of:
          0.0025795435 = sum of:
            0.0025795435 = weight(_text_:a in 79) [ClassicSimilarity], result of:
              0.0025795435 = score(doc=79,freq=12.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.12482099 = fieldWeight in 79, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Type
    a
  5. Bizer, C.; Cyganiak, R.; Heath, T.: How to publish Linked Data on the Web (2007) 0.00
    5.074854E-4 = product of:
      0.0076122805 = sum of:
        0.0063836705 = product of:
          0.012767341 = sum of:
            0.012767341 = weight(_text_:online in 3791) [ClassicSimilarity], result of:
              0.012767341 = score(doc=3791,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.23471867 = fieldWeight in 3791, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3791)
          0.5 = coord(1/2)
        0.00122861 = product of:
          0.00368583 = sum of:
            0.00368583 = weight(_text_:a in 3791) [ClassicSimilarity], result of:
              0.00368583 = score(doc=3791,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.17835285 = fieldWeight in 3791, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3791)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    This document provides a tutorial on how to publish Linked Data on the Web. After a general overview of the concept of Linked Data, we describe several practical recipes for publishing information as Linked Data on the Web.
    Content
    This tutorial has been superseeded by the book Linked Data: Evolving the Web into a Global Data Space written by Tom Heath and Christian Bizer. This tutorial was published in 2007 and is still online for historical reasons. The Linked Data book was published in 2011 and provides a more detailed and up-to-date introduction into Linked Data.
  6. Leskinen, P.; Hyvönen, E.: Extracting genealogical networks of linked data from biographical texts (2019) 0.00
    5.074854E-4 = product of:
      0.0076122805 = sum of:
        0.0063836705 = product of:
          0.012767341 = sum of:
            0.012767341 = weight(_text_:online in 5798) [ClassicSimilarity], result of:
              0.012767341 = score(doc=5798,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.23471867 = fieldWeight in 5798, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5798)
          0.5 = coord(1/2)
        0.00122861 = product of:
          0.00368583 = sum of:
            0.00368583 = weight(_text_:a in 5798) [ClassicSimilarity], result of:
              0.00368583 = score(doc=5798,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.17835285 = fieldWeight in 5798, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5798)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    This paper presents the idea and our work of extracting and reassembling a genealogical network automatically from a collection of biographies. The network can be used as a tool for network analysis of historical persons. The data has been published as Linked Data and as an interactive online service as part of the in-use data service and semantic portal BiographySampo - Finnish Biographies on the Semantic Web.
    Type
    a
  7. Wright, H.: Semantic Web and ontologies (2018) 0.00
    4.9651193E-4 = product of:
      0.007447678 = sum of:
        0.0063836705 = product of:
          0.012767341 = sum of:
            0.012767341 = weight(_text_:online in 80) [ClassicSimilarity], result of:
              0.012767341 = score(doc=80,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.23471867 = fieldWeight in 80, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=80)
          0.5 = coord(1/2)
        0.0010640075 = product of:
          0.0031920224 = sum of:
            0.0031920224 = weight(_text_:a in 80) [ClassicSimilarity], result of:
              0.0031920224 = score(doc=80,freq=6.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.1544581 = fieldWeight in 80, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=80)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    The Semantic Web and ontologies can help archaeologists combine and share data, making it more open and useful. Archaeologists create diverse types of data, using a wide variety of technologies and methodologies. Like all research domains, these data are increasingly digital. The creation of data that are now openly and persistently available from disparate sources has also inspired efforts to bring archaeological resources together and make them more interoperable. This allows functionality such as federated cross-search across different datasets, and the mapping of heterogeneous data to authoritative structures to build a single data source. Ontologies provide the structure and relationships for Semantic Web data, and have been developed for use in cultural heritage applications generally, and archaeology specifically. A variety of online resources for archaeology now incorporate Semantic Web principles and technologies.
  8. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.00
    4.5964378E-4 = product of:
      0.013789313 = sum of:
        0.013789313 = product of:
          0.020683968 = sum of:
            0.00368583 = weight(_text_:a in 759) [ClassicSimilarity], result of:
              0.00368583 = score(doc=759,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.17835285 = fieldWeight in 759, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
            0.016998138 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.016998138 = score(doc=759,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.6666667 = coord(2/3)
      0.033333335 = coord(1/30)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  9. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.00
    3.7773643E-4 = product of:
      0.011332093 = sum of:
        0.011332093 = product of:
          0.033996277 = sum of:
            0.033996277 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.033996277 = score(doc=4643,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Date
    22. 9.2007 15:41:14
  10. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    3.28317E-4 = product of:
      0.009849509 = sum of:
        0.009849509 = product of:
          0.014774263 = sum of:
            0.0026327355 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
              0.0026327355 = score(doc=4553,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.12739488 = fieldWeight in 4553, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
            0.012141528 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.012141528 = score(doc=4553,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.6666667 = coord(2/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  11. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.00
    3.2377406E-4 = product of:
      0.009713221 = sum of:
        0.009713221 = product of:
          0.029139664 = sum of:
            0.029139664 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.029139664 = score(doc=6048,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Date
    22. 9.2007 15:41:14
  12. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.00
    3.2377406E-4 = product of:
      0.009713221 = sum of:
        0.009713221 = product of:
          0.029139664 = sum of:
            0.029139664 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.029139664 = score(doc=100,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Date
    22. 9.2007 15:41:14
  13. Radhakrishnan, A.: Swoogle : an engine for the Semantic Web (2007) 0.00
    3.1719138E-4 = product of:
      0.0047578705 = sum of:
        0.0036478117 = product of:
          0.0072956234 = sum of:
            0.0072956234 = weight(_text_:online in 4709) [ClassicSimilarity], result of:
              0.0072956234 = score(doc=4709,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.13412495 = fieldWeight in 4709, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4709)
          0.5 = coord(1/2)
        0.0011100589 = product of:
          0.0033301765 = sum of:
            0.0033301765 = weight(_text_:a in 4709) [ClassicSimilarity], result of:
              0.0033301765 = score(doc=4709,freq=20.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.16114321 = fieldWeight in 4709, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4709)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Content
    "Swoogle, the Semantic web search engine, is a research project carried out by the ebiquity research group in the Computer Science and Electrical Engineering Department at the University of Maryland. It's an engine tailored towards finding documents on the semantic web. The whole research paper is available here. Semantic web is touted as the next generation of online content representation where the web documents are represented in a language that is not only easy for humans but is machine readable (easing the integration of data as never thought possible) as well. And the main elements of the semantic web include data model description formats such as Resource Description Framework (RDF), a variety of data interchange formats (e.g. RDF/XML, Turtle, N-Triples), and notations such as RDF Schema (RDFS), the Web Ontology Language (OWL), all of which are intended to provide a formal description of concepts, terms, and relationships within a given knowledge domain (Wikipedia). And Swoogle is an attempt to mine and index this new set of web documents. The engine performs crawling of semantic documents like most web search engines and the search is available as web service too. The engine is primarily written in Java with the PHP used for the front-end and MySQL for database. Swoogle is capable of searching over 10,000 ontologies and indexes more that 1.3 million web documents. It also computes the importance of a Semantic Web document. The techniques used for indexing are the more google-type page ranking and also mining the documents for inter-relationships that are the basis for the semantic web. For more information on how the RDF framework can be used to relate documents, read the link here. Being a research project, and with a non-commercial motive, there is not much hype around Swoogle. However, the approach to indexing of Semantic web documents is an approach that most engines will have to take at some point of time. When the Internet debuted, there were no specific engines available for indexing or searching. The Search domain only picked up as more and more content became available. One fundamental question that I've always wondered about it is - provided that the search engines return very relevant results for a query - how to ascertain that the documents are indeed the most relevant ones available. There is always an inherent delay in indexing of document. Its here that the new semantic documents search engines can close delay. Experimenting with the concept of Search in the semantic web can only bore well for the future of search technology."
  14. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.00
    2.1584939E-4 = product of:
      0.006475481 = sum of:
        0.006475481 = product of:
          0.019426443 = sum of:
            0.019426443 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.019426443 = score(doc=4331,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Date
    15. 3.2011 19:21:22
  15. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.00
    1.8886822E-4 = product of:
      0.0056660464 = sum of:
        0.0056660464 = product of:
          0.016998138 = sum of:
            0.016998138 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.016998138 = score(doc=4330,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Date
    12. 2.2011 17:35:22
  16. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    4.9643342E-5 = product of:
      0.0014893002 = sum of:
        0.0014893002 = product of:
          0.0044679004 = sum of:
            0.0044679004 = weight(_text_:a in 4704) [ClassicSimilarity], result of:
              0.0044679004 = score(doc=4704,freq=16.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2161963 = fieldWeight in 4704, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Content
    Vgl. unter: http://www.dblab.ntua.gr/~bikakis/LD/5.pdf Vgl. auch: http://swoogle.umbc.edu/. Vgl. auch: http://ebiquity.umbc.edu/paper/html/id/183/. Vgl. auch: Radhakrishnan, A.: Swoogle : An Engine for the Semantic Web unter: http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/.
    Type
    a
  17. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    4.6252455E-5 = product of:
      0.0013875735 = sum of:
        0.0013875735 = product of:
          0.0041627204 = sum of:
            0.0041627204 = weight(_text_:a in 5309) [ClassicSimilarity], result of:
              0.0041627204 = score(doc=5309,freq=20.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.20142901 = fieldWeight in 5309, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5309)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
    Type
    a
  18. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.00
    4.578759E-5 = product of:
      0.0013736277 = sum of:
        0.0013736277 = product of:
          0.004120883 = sum of:
            0.004120883 = weight(_text_:a in 517) [ClassicSimilarity], result of:
              0.004120883 = score(doc=517,freq=40.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19940455 = fieldWeight in 517, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=517)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Content
    "Textual content-based search engines for the web have a number of limitations. Firstly, many web resources have little or no textual content (images, audio or video streams etc.) Secondly, precision is low where natural language terms have overloaded meaning (e.g. 'bank', 'watch', 'chip' etc.) Thirdly, recall is incomplete where the search does not take account of synonyms or quasi-synonyms. Fourthly, there is no basis for assisting a user in modifying (expanding, refining, translating) a search based on the meaning of the original search. Fifthly, there is no basis for searching across natural languages, or framing search queries in terms of symbolic languages. The Semantic Web is a framework for creating, managing, publishing and searching semantically rich metadata for web resources. Annotating web resources with precise and meaningful statements about conceptual aspects of their content provides a basis for overcoming all of the limitations of textual content-based search engines listed above. Creating this type of metadata requires that metadata generators are able to refer to shared repositories of meaning: 'vocabularies' of concepts that are common to a community, and describe the domain of interest for that community.
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  19. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.00
    4.462823E-5 = product of:
      0.0013388467 = sum of:
        0.0013388467 = product of:
          0.00401654 = sum of:
            0.00401654 = weight(_text_:a in 5903) [ClassicSimilarity], result of:
              0.00401654 = score(doc=5903,freq=38.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19435552 = fieldWeight in 5903, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  20. Isaac, A.: Aligning thesauri for an integrated access to Cultural Heritage Resources (2007) 0.00
    4.343792E-5 = product of:
      0.0013031376 = sum of:
        0.0013031376 = product of:
          0.003909413 = sum of:
            0.003909413 = weight(_text_:a in 553) [ClassicSimilarity], result of:
              0.003909413 = score(doc=553,freq=36.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.18917176 = fieldWeight in 553, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=553)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Currently, a number of efforts are being carried out to integrate collections from different institutions and containing heterogeneous material. Examples of such projects are The European Library [1] and the Memory of the Netherlands [2]. A crucial point for the success of these is the availability to provide a unified access on top of the different collections, e.g. using one single vocabulary for querying or browsing the objects they contain. This is made difficult by the fact that the objects from different collections are often described using different vocabularies - thesauri, classification schemes - and are therefore not interoperable at the semantic level. To solve this problem, one can turn to semantic links - mappings - between the elements of the different vocabularies. If one knows that a concept C from a vocabulary V is semantically equivalent to a concept to a concept D from vocabulary W, then an appropriate search engine can return all the objects that were indexed against D for a query for objects described using C. We thus have an access to other collections, using a single one vocabulary. This is however an ideal situation, and hard alignment work is required to reach it. Several projects in the past have tried to implement such a solution, like MACS [3] and Renardus [4]. They have demonstrated very interesting results, but also highlighted the difficulty of aligning manually all the different vocabularies involved in practical cases, which sometimes contain hundreds of thousands of concepts. To alleviate this problem, a number of tools have been proposed in order to provide with candidate mappings between two input vocabularies, making alignment a (semi-) automatic task. Recently, the Semantic Web community has produced a lot of these alignment tools'. Several techniques are found, depending on the material they exploit: labels of concepts, structure of vocabularies, collection objects and external knowledge sources. Throughout our presentation, we will present a concrete heterogeneity case where alignment techniques have been applied to build a (pilot) browser, developed in the context of the STITCH project [5]. This browser enables a unified access to two collections of illuminated manuscripts, using the description vocabulary used in the first collection, Mandragore [6], or the one used by the second, Iconclass [7]. In our talk, we will also make the point for using unified representations the vocabulary semantic and lexical information. Additionally to ease the use of the alignment tools that have these vocabularies as input, turning to a standard representation format helps designing applications that are more generic, like the browser we demonstrate. We give pointers to SKOS [8], an open and web-enabled format currently developed by the Semantic Web community.

Years

Languages

  • e 72
  • d 7
  • f 1
  • More… Less…

Types