Search (57 results, page 2 of 3)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"a"
  1. Vlachidis, A.; Tudhope, D.: ¬A knowledge-based approach to information extraction for semantic interoperability in the archaeology domain (2016) 0.01
    0.009479279 = product of:
      0.028437834 = sum of:
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 2895) [ClassicSimilarity], result of:
              0.05687567 = score(doc=2895,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 2895, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2895)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The article presents a method for automatic semantic indexing of archaeological grey-literature reports using empirical (rule-based) Information Extraction techniques in combination with domain-specific knowledge organization systems. The semantic annotation system (OPTIMA) performs the tasks of Named Entity Recognition, Relation Extraction, Negation Detection, and Word-Sense Disambiguation using hand-crafted rules and terminological resources for associating contextual abstractions with classes of the standard ontology CIDOC Conceptual Reference Model (CRM) for cultural heritage and its archaeological extension, CRM-EH. Relation Extraction (RE) performance benefits from a syntactic-based definition of RE patterns derived from domain oriented corpus analysis. The evaluation also shows clear benefit in the use of assistive natural language processing (NLP) modules relating to Word-Sense Disambiguation, Negation Detection, and Noun Phrase Validation, together with controlled thesaurus expansion. The semantic indexing results demonstrate the capacity of rule-based Information Extraction techniques to deliver interoperable semantic abstractions (semantic annotations) with respect to the CIDOC CRM and archaeological thesauri. Major contributions include recognition of relevant entities using shallow parsing NLP techniques driven by a complimentary use of ontological and terminological domain resources and empirical derivation of context-driven RE rules for the recognition of semantic relationships from phrases of unstructured text.
  2. Gödert, W.: Ontological spine, localization and multilingual access : some reflections and a proposal (2008) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 4334) [ClassicSimilarity], result of:
              0.05630404 = score(doc=4334,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 4334, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4334)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    New pespectives on subject indexing and classification: essays in honour of Magda Heiner-Freiling. Red.: K. Knull-Schlomann, u.a
  3. Wicaksana, I.W.S.; Wahyudi, B.: Comparison Latent Semantic and WordNet approach for semantic similarity calculation (2011) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 689) [ClassicSimilarity], result of:
              0.05630404 = score(doc=689,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=689)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Object
    Latent semantic indexing
  4. Dunsire, G.: Enhancing information services using machine-to-machine terminology services (2011) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 1805) [ClassicSimilarity], result of:
              0.05630404 = score(doc=1805,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 1805, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1805)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  5. Hubrich, J.: CrissCross: SWD-DDC-Mapping (2008) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 2175) [ClassicSimilarity], result of:
              0.053852726 = score(doc=2175,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 2175, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2175)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2009 10:35:21
  6. Nicholson, D.; Wake, S.: HILT: subject retrieval in a distributed environment (2003) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 3810) [ClassicSimilarity], result of:
              0.048260607 = score(doc=3810,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 3810, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3810)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
  7. Jahns, Y.: 20 years SWD : German subject authority data prepared for the future (2011) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1802) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1802,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1802, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1802)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  8. Panzer, M.: Increasing patient findability of medical research : annotating clinical trials using standard vocabularies (2017) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 2783) [ClassicSimilarity], result of:
              0.048260607 = score(doc=2783,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 2783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2783)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Multiple groups at Mayo Clinic organize knowledge with the aid of metadata for a variety of purposes. The ontology group focuses on consumer-oriented health information using several controlled vocabularies to support and coordinate care providers, consumers, clinical knowledge and, as part of its research management, information on clinical trials. Poor findability, inconsistent indexing and specialized language undermined the goal of increasing trial participation. The ontology group designed a metadata framework addressing disorders and procedures, investigational drugs and clinical departments, adopted and translated the clinical terminology of SNOMED CT and RxNorm vocabularies to consumer language and coordinated terminology with Mayo's Consumer Health Vocabulary. The result enables retrieval of clinical trial information from multiple access points including conditions, procedures, drug names, organizations involved and trial phase. The jump in inquiries since the search site was revised and vocabularies were modified show evidence of success.
  9. Smith, A.: Simple Knowledge Organization System (SKOS) (2022) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1094) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1094,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1094, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1094)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    SKOS (Simple Knowledge Organization System) is a recommendation from the World Wide Web Consortium (W3C) for representing controlled vocabularies, taxonomies, thesauri, classifications, and similar systems for organizing and indexing information as linked data elements in the Semantic Web, using the Resource Description Framework (RDF). The SKOS data model is centered on "concepts", which can have preferred and alternate labels in any language as well as other metadata, and which are identified by addresses on the World Wide Web (URIs). Concepts are grouped into hierarchies through "broader" and "narrower" relations, with "top concepts" at the broadest conceptual level. Concepts are also organized into "concept schemes", also identified by URIs. Other relations, mappings, and groupings are also supported. This article discusses the history of the development of SKOS and provides notes on adoption, uses, and limitations.
  10. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.01
    0.007933255 = product of:
      0.023799766 = sum of:
        0.023799766 = product of:
          0.04759953 = sum of:
            0.04759953 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.04759953 = score(doc=1962,freq=4.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  11. Mayr, P.; Petras, V.: Building a Terminology Network for Search : the KoMoHe project (2008) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 2618) [ClassicSimilarity], result of:
              0.047121134 = score(doc=2618,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 2618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2618)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Petras, V.: Heterogenitätsbehandlung und Terminology Mapping durch Crosskonkordanzen : eine Fallstudie (2010) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 3730) [ClassicSimilarity], result of:
              0.047121134 = score(doc=3730,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 3730, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3730)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  13. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.047121134 = score(doc=4184,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 10:38:28
  14. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.047121134 = score(doc=759,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2013 19:22:18
  15. Candela, G.: ¬An automatic data quality approach to assess semantic data from cultural heritage institutions (2023) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 997) [ClassicSimilarity], result of:
              0.047121134 = score(doc=997,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=997)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2023 18:23:31
  16. Tudhope, D.; Binding, C.: Toward terminology services : experiences with a pilot Web service thesaurus browser (2006) 0.01
    0.0075834226 = product of:
      0.022750268 = sum of:
        0.022750268 = product of:
          0.045500536 = sum of:
            0.045500536 = weight(_text_:indexing in 1955) [ClassicSimilarity], result of:
              0.045500536 = score(doc=1955,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23924173 = fieldWeight in 1955, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1955)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Dublin Core recommends controlled terminology for the subject of a resource. Knowledge organization systems (KOS), such as classifications, gazetteers, taxonomies and thesauri, provide controlled vocabularies that organize and structure concepts for indexing, classifying, browsing and search. For example, a thesaurus employs a set of standard semantic relationships (ISO 2788, ISO 5964), and major thesauri have a large entry vocabulary of terms considered equivalent for retrieval purposes. Many KOS have been made available for Web-based access. However, they are often not fully integrated into indexing and search systems and the full potential for networked and programmatic access remains untapped. The lack of standardized access and interchange formats impedes wider use of KOS resources. We developed a Web demonstrator (www.comp.glam.ac.uk/~FACET/webdemo/) for the FACET project (www.comp.glam.ac.uk/~facet/facetproject.html) that explored thesaurus-based query expansion with the Getty Art and Architecture Thesaurus. A Web demonstrator was implemented via Active Server Pages (ASP) with server-side scripting and compiled server-side components for database access, and cascading style sheets for presentation. The browser-based interactive interface permits dynamic control of query term expansion. However, being based on a custom thesaurus representation and API, the techniques cannot be applied directly to thesauri in other formats on the Web. General programmatic access requires commonly agreed protocols, for example, building on Web and Grid services. The development of common KOS representation formats and service protocols are closely linked. Linda Hill and colleagues argued in 2002 for a general KOS service protocol from which protocols for specific types of KOS can be derived. Thus, in the future, a combination of thesaurus and query protocols might permit a thesaurus to be used with a choice of search tools on various kinds of databases. Service-oriented architectures bring an opportunity for moving toward a clearer separation of interface components from the underlying data sources. In our view, basing distributed protocol services on the atomic elements of thesaurus data structures and relationships is not necessarily the best approach because client operations that require multiple client-server calls would carry too much overhead. This would limit the interfaces that could be offered by applications following such a protocol. Advanced interactive interfaces require protocols that group primitive thesaurus data elements (via their relationships) into composites to achieve reasonable response.
  17. Boteram, F.: "Content architecture" : semantic interoperability in an international comprehensive knowledge organisation system (2010) 0.01
    0.0075834226 = product of:
      0.022750268 = sum of:
        0.022750268 = product of:
          0.045500536 = sum of:
            0.045500536 = weight(_text_:indexing in 647) [ClassicSimilarity], result of:
              0.045500536 = score(doc=647,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23924173 = fieldWeight in 647, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=647)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - This paper seeks to develop a specified typology of various levels of semantic interoperability, designed to provide semantically expressive and functional means to interconnect typologically different sub-systems in an international comprehensive knowledge organization system, supporting advanced information retrieval and exploration strategies. Design/methodology/approach - Taking the analysis of rudimentary forms of a functional interoperability based on simple pattern matching as a starting-point, more refined strategies to provide semantic interoperability, which is actually reaching the conceptual and even thematic level, are being developed. The paper also examines the potential benefits and perspectives of the selective transfer of modelling strategies from the field of semantic technologies for the refinement of relational structures of inter-system and inter-concept relations as a requirement for expressive and functional indexing languages supporting advanced types of semantic interoperability. Findings - As the principles and strategies of advanced information retrieval systems largely depend on semantic information, new concepts and strategies to achieve semantic interoperability have to be developed. Research limitations/implications - The approach has been developed in the functional and structural context of an international comprehensive system integrating several heterogeneous knowledge organization systems and indexing languages by interconnecting them to a central conceptual structure operating as a spine in an overall system designed to support retrieval and exploration of bibliographic records representing complex conceptual entities. Originality/value - Research and development aimed at providing technical and structural interoperability has to be complemented by a thorough and precise reflection and definition of various degrees and types of interoperability on the semantic level as well. The approach specifies these levels and reflects the implications and their potential for advanced strategies of retrieval and exploration.
  18. Levergood, B.; Farrenkopf, S.; Frasnelli, E.: ¬The specification of the language of the field and interoperability : cross-language access to catalogues and online libraries (CACAO) (2008) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.04038954 = score(doc=2646,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  19. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.04038954 = score(doc=4820,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    3.12.2016 18:39:22
  20. Kempf, A.O.; Zapilko, B.: Normdatenpflege in Zeiten der Automatisierung : Erstellung und Evaluation automatisch aufgebauter Thesaurus-Crosskonkordanzen (2013) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 1021) [ClassicSimilarity], result of:
              0.04038954 = score(doc=1021,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 1021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1021)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    18. 8.2013 12:53:22

Languages

  • e 49
  • d 8