Search (235 results, page 2 of 12)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"a"
  1. Kozikowski, P. et al.: Support of part-whole relations in query answering (2016) 0.02
    0.015289003 = product of:
      0.038222507 = sum of:
        0.0068111527 = weight(_text_:a in 2754) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=2754,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 2754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2754)
        0.031411353 = product of:
          0.06282271 = sum of:
            0.06282271 = weight(_text_:22 in 2754) [ClassicSimilarity], result of:
              0.06282271 = score(doc=2754,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.38690117 = fieldWeight in 2754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2754)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    1. 2.2016 18:25:22
    Type
    a
  2. Efthimiadis, E.N.: End-users' understanding of thesaural knowledge structures in interactive query expansion (1994) 0.01
    0.013826758 = product of:
      0.034566894 = sum of:
        0.009437811 = weight(_text_:a in 5693) [ClassicSimilarity], result of:
          0.009437811 = score(doc=5693,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 5693, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5693)
        0.025129084 = product of:
          0.050258167 = sum of:
            0.050258167 = weight(_text_:22 in 5693) [ClassicSimilarity], result of:
              0.050258167 = score(doc=5693,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.30952093 = fieldWeight in 5693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5693)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The process of term selection for query expansion by end-users is discussed within the context of a study of interactive query expansion in a relevance feedback environment. This user study focuses on how users' perceive and understand term relationships, such as hierarchical and associative relationships, in their searches
    Date
    30. 3.2001 13:35:22
    Type
    a
  3. Lund, K.; Burgess, C.; Atchley, R.A.: Semantic and associative priming in high-dimensional semantic space (1995) 0.01
    0.013466656 = product of:
      0.03366664 = sum of:
        0.011678694 = weight(_text_:a in 2151) [ClassicSimilarity], result of:
          0.011678694 = score(doc=2151,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21843673 = fieldWeight in 2151, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2151)
        0.021987949 = product of:
          0.043975897 = sum of:
            0.043975897 = weight(_text_:22 in 2151) [ClassicSimilarity], result of:
              0.043975897 = score(doc=2151,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2708308 = fieldWeight in 2151, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2151)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We present a model of semantic memory that utilizes a high dimensional semantic space constructed from a co-occurrence matrix. This matrix was formed by analyzing a lot) million word corpus. Word vectors were then obtained by extracting rows and columns of this matrix, These vectors were subjected to multidimensional scaling. Words were found to cluster semantically. suggesting that interword distance may be interpretable as a measure of semantic similarity, In attempting to replicate with our simulation the semantic and ...
    Source
    Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society: July 22 - 25, 1995, University of Pittsburgh / ed. by Johanna D. Moore and Jill Fain Lehmann
    Type
    a
  4. Mlodzka-Stybel, A.: Towards continuous improvement of users' access to a library catalogue (2014) 0.01
    0.012609425 = product of:
      0.031523563 = sum of:
        0.009535614 = weight(_text_:a in 1466) [ClassicSimilarity], result of:
          0.009535614 = score(doc=1466,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 1466, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1466)
        0.021987949 = product of:
          0.043975897 = sum of:
            0.043975897 = weight(_text_:22 in 1466) [ClassicSimilarity], result of:
              0.043975897 = score(doc=1466,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2708308 = fieldWeight in 1466, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1466)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The paper discusses the issue of increasing users' access to library records by their publication in Google. Data from the records, converted into html format, have been indexed by Google. The process covered basic formal description fields of the records, description of the content, supported with a thesaurus, as well as an abstract, if present in the record. In addition to monitoring the end users' statistics, the pilot testing covered visibility of library records in Google search results.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  5. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.01
    0.012098414 = product of:
      0.030246034 = sum of:
        0.008258085 = weight(_text_:a in 1465) [ClassicSimilarity], result of:
          0.008258085 = score(doc=1465,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 1465, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1465)
        0.021987949 = product of:
          0.043975897 = sum of:
            0.043975897 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
              0.043975897 = score(doc=1465,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2708308 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    "Explore" is a user task introduced in the Functional Requirements for Subject Authority Data (FRSAD) final report. Through various case scenarios, the authors discuss how structured data, presented based on Linked Data principles and using knowledge organisation systems (KOS) as the backbone, extend the explore task within and beyond subject authority data.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  6. Zeng, M.L.; Gracy, K.F.; Zumer, M.: Using a semantic analysis tool to generate subject access points : a study using Panofsky's theory and two research samples (2014) 0.01
    0.010808079 = product of:
      0.027020195 = sum of:
        0.008173384 = weight(_text_:a in 1464) [ClassicSimilarity], result of:
          0.008173384 = score(doc=1464,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 1464, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1464)
        0.018846812 = product of:
          0.037693623 = sum of:
            0.037693623 = weight(_text_:22 in 1464) [ClassicSimilarity], result of:
              0.037693623 = score(doc=1464,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23214069 = fieldWeight in 1464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1464)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper attempts to explore an approach of using an automatic semantic analysis tool to enhance the "subject" access to materials that are not included in the usual library subject cataloging process. Using two research samples the authors analyzed the access points supplied by OpenCalais, a semantic analysis tool. As an aid in understanding how computerized subject analysis might be approached, this paper suggests using the three-layer framework that has been accepted and applied in image analysis, developed by Erwin Panofsky.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  7. Nakashima, M.; Sato, K.; Qu, Y.; Ito, T.: Browsing-based conceptual information retrieval incorporating dictionary term relations, keyword associations, and a user's interest (2003) 0.01
    0.010120111 = product of:
      0.025300276 = sum of:
        0.01582769 = weight(_text_:a in 5147) [ClassicSimilarity], result of:
          0.01582769 = score(doc=5147,freq=30.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.296039 = fieldWeight in 5147, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5147)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 5147) [ClassicSimilarity], result of:
              0.018945174 = score(doc=5147,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 5147, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5147)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A model of browsing-based conceptual information retrieval is proposed employing two different types of dictionaries, a global dictionary and a local dictionary. A global dictionary with the authorized terms is utilized to capture the commonly acknowledgeable conceptual relation between a query and a document by replacing their keywords with the dictionary terms. The documents are ranked by the conceptual closeness to a query, and are arranged in the form of a user's personal digital library, or pDL. In a pDL a user can browse the arranged documents based an a suggestion about which documents are worth examining. This suggestion is made by the information in a local dictionary that is organized so as to reflect a user's interest and the association of keywords with the documents. Experiments for testing the retrieval performance of utilizing the two types of dictionaries were also performed using Standard test collections.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.1, S.16-28
    Type
    a
  8. Talja, S.; Keso, H.; Pietilainen, T.: ¬The production of context in information seeking research : a metatheoretical view (1999) 0.01
    0.009982069 = product of:
      0.024955172 = sum of:
        0.01155891 = weight(_text_:a in 6249) [ClassicSimilarity], result of:
          0.01155891 = score(doc=6249,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 6249, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6249)
        0.013396261 = product of:
          0.026792523 = sum of:
            0.026792523 = weight(_text_:information in 6249) [ClassicSimilarity], result of:
              0.026792523 = score(doc=6249,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3291521 = fieldWeight in 6249, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6249)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Information processing and management. 35(1999) no.6, S.751-763
    Type
    a
  9. Hemmje, M.: LyberWorld - a 3D graphical user interface for fulltext retrieval (1995) 0.01
    0.009613792 = product of:
      0.024034481 = sum of:
        0.011678694 = weight(_text_:a in 2385) [ClassicSimilarity], result of:
          0.011678694 = score(doc=2385,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21843673 = fieldWeight in 2385, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2385)
        0.012355788 = product of:
          0.024711575 = sum of:
            0.024711575 = weight(_text_:information in 2385) [ClassicSimilarity], result of:
              0.024711575 = score(doc=2385,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3035872 = fieldWeight in 2385, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2385)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space: fulltext. The video demonstrates a visual user interface for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during retrieval dialogues.
    Type
    a
  10. Sanderson, M.; Lawrie, D.: Building, testing, and applying concept hierarchies (2000) 0.01
    0.0093978 = product of:
      0.0234945 = sum of:
        0.015291 = weight(_text_:a in 37) [ClassicSimilarity], result of:
          0.015291 = score(doc=37,freq=28.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.28600082 = fieldWeight in 37, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=37)
        0.008203502 = product of:
          0.016407004 = sum of:
            0.016407004 = weight(_text_:information in 37) [ClassicSimilarity], result of:
              0.016407004 = score(doc=37,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20156369 = fieldWeight in 37, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=37)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A means of automatically deriving a hierarchical organization of concepts from a set of documents without use of training data or standard clustering techniques is presented. Using a process that extracts salient words and phrases from the documents, these terms are organized hierarchically using a type of co-occurrence known as subsumption. The resulting structure is displayed as a series of hierarchical menus. When generated from a set of retrieved documents, a user browsing the menus gains an overview of their content in a manner distinct from existing techniques. The methods used to build the structure are simple and appear to be effective. The formation and presentation of the hierarchy is described along with a study of some of its properties, including a preliminary experiment, which indicates that users may find the hierarchy a more efficient means of locating relevant documents than the classic method of scanning a ranked document list
    Series
    The Kluwer international series on information retrieval; 7
    Source
    Advances in information retrieval: Recent research from the Center for Intelligent Information Retrieval. Ed.: W.B. Croft
    Type
    a
  11. Fowler, R.H.; Wilson, B.A.; Fowler, W.A.L.: Information navigator : an information system using associative networks for display and retrieval (1992) 0.01
    0.00933737 = product of:
      0.023343425 = sum of:
        0.010812371 = weight(_text_:a in 919) [ClassicSimilarity], result of:
          0.010812371 = score(doc=919,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 919, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=919)
        0.012531055 = product of:
          0.02506211 = sum of:
            0.02506211 = weight(_text_:information in 919) [ClassicSimilarity], result of:
              0.02506211 = score(doc=919,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3078936 = fieldWeight in 919, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=919)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Document retrieval is a highly interactive process dealing with large amounts of information. Visual representations can provide both a means for managing the complexity of large information structures and an interface style well suited to interactive manipulation. The system we have designed utilizes visually displayed graphic structures and a direct manipulation interface style to supply an integrated environment for retrieval. A common visually displayed network structure is used for query, document content, and term relations. A query can be modified through direct manipulation of its visual form by incorporating terms from any other information structure the system displays. An associative thesaurus of terms and an inter-document network provide information about a document collection that can complement other retrieval aids. Visualization of these large data structures makes use of fisheye views and overview diagrams to help overcome some of the inherent difficulties of orientation and navigation in large information structures.
    Type
    a
  12. Hemmje, M.; Kunkel, C.; Willett, A.: LyberWorld - a visualization user interface supporting fulltext retrieval (1994) 0.01
    0.009264166 = product of:
      0.023160413 = sum of:
        0.01155891 = weight(_text_:a in 2384) [ClassicSimilarity], result of:
          0.01155891 = score(doc=2384,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 2384, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2384)
        0.011601503 = product of:
          0.023203006 = sum of:
            0.023203006 = weight(_text_:information in 2384) [ClassicSimilarity], result of:
              0.023203006 = score(doc=2384,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2850541 = fieldWeight in 2384, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2384)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space-fulltext. The paper derives a model for such visualizations and an exemplar user interface design is implemented for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind and interaction with a system's corresponding display methods is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during e.g. query construction, orientation within the database content, relevance judgement and orientation within the retrieval context.
    Source
    Proceeding SIGIR '94: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval
    Type
    a
  13. Lin, J.; DiCuccio, M.; Grigoryan, V.; Wilbur, W.J.: Navigating information spaces : a case study of related article search in PubMed (2008) 0.01
    0.009140301 = product of:
      0.022850752 = sum of:
        0.012260076 = weight(_text_:a in 2124) [ClassicSimilarity], result of:
          0.012260076 = score(doc=2124,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22931081 = fieldWeight in 2124, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2124)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 2124) [ClassicSimilarity], result of:
              0.02118135 = score(doc=2124,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 2124, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2124)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The concept of an "information space" provides a powerful metaphor for guiding the design of interactive retrieval systems. We present a case study of related article search, a browsing tool designed to help users navigate the information space defined by results of the PubMed® search engine. This feature leverages content-similarity links that tie MEDLINE® citations together in a vast document network. We examine the effectiveness of related article search from two perspectives: a topological analysis of networks generated from information needs represented in the TREC 2005 genomics track and a query log analysis of real PubMed users. Together, data suggest that related article search is a useful feature and that browsing related articles has become an integral part of how users interact with PubMed.
    Source
    Information processing and management. 44(2008) no.5, S.1771-1783
    Type
    a
  14. Johnson, J.D.: On contexts of information seeking (2003) 0.01
    0.00896555 = product of:
      0.022413874 = sum of:
        0.010812371 = weight(_text_:a in 1082) [ClassicSimilarity], result of:
          0.010812371 = score(doc=1082,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 1082, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1082)
        0.011601503 = product of:
          0.023203006 = sum of:
            0.023203006 = weight(_text_:information in 1082) [ClassicSimilarity], result of:
              0.023203006 = score(doc=1082,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2850541 = fieldWeight in 1082, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1082)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    While surprisingly little has been written about context at a meaningful level, context is central to most theoretical approaches to information seeking. In this essay I explore in more detail three senses of context. First, I look at context as equivalent to the situation in which a process is immersed. Second, I discuss contingency approaches that detail active ingredients of the situation that have specific, predictable effects. Third, I examine major frameworks for meaning systems. Then, I discuss how a deeper appreciation of context can enhance our understanding of the process of information seeking by examining two vastly different contexts in which it occurs: organizational and cancer-related, an exemplar of everyday life information seeking. This essay concludes with a discussion of the value that can be added to information seeking research and theory as a result of a deeper appreciation of context, particularly in terms of our current multi-contextual environment and individuals taking an active role in contextualizing.
    Source
    Information processing and management. 39(2003) no.5, S.735-760
    Type
    a
  15. Hetzler, B.: Visual analysis and exploration of relationships (2002) 0.01
    0.008717269 = product of:
      0.021793172 = sum of:
        0.008258085 = weight(_text_:a in 1189) [ClassicSimilarity], result of:
          0.008258085 = score(doc=1189,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 1189, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1189)
        0.013535086 = product of:
          0.027070172 = sum of:
            0.027070172 = weight(_text_:information in 1189) [ClassicSimilarity], result of:
              0.027070172 = score(doc=1189,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3325631 = fieldWeight in 1189, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Relationships can provide a rich and powerful set of information and can be used to accomplish application goals, such as information retrieval and natural language processing. A growing trend in the information science community is the use of information visualization-taking advantage of people's natural visual capabilities to perceive and understand complex information. This chapter explores how visualization and visual exploration can help users gain insight from known relationships and discover evidence of new relationships not previously anticipated.
    Series
    Information science and knowledge management; vol.3
    Type
    a
  16. Ross, J.: ¬A new way of information retrieval : 3-D indexing and concept mapping (2000) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 6171) [ClassicSimilarity], result of:
          0.01155891 = score(doc=6171,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 6171, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6171)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 6171) [ClassicSimilarity], result of:
              0.018945174 = score(doc=6171,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 6171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6171)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Type
    a
  17. Shiri, A.A.; Revie, C.: ¬The effects of topic complexity and familiarity on cognitive and physical moves in a thesaurus-enhanced search environment (2003) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 4695) [ClassicSimilarity], result of:
          0.01155891 = score(doc=4695,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 4695, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4695)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 4695) [ClassicSimilarity], result of:
              0.018945174 = score(doc=4695,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 4695, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4695)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of information science. 29(2003) no.6, S.517-
    Type
    a
  18. Kelly, D.: Measuring online information seeking context : Part 1: background and method (2006) 0.01
    0.008318391 = product of:
      0.020795977 = sum of:
        0.009632425 = weight(_text_:a in 206) [ClassicSimilarity], result of:
          0.009632425 = score(doc=206,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18016359 = fieldWeight in 206, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=206)
        0.011163551 = product of:
          0.022327103 = sum of:
            0.022327103 = weight(_text_:information in 206) [ClassicSimilarity], result of:
              0.022327103 = score(doc=206,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27429342 = fieldWeight in 206, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=206)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purposes of this study were to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the first part, the background and method are presented. Results and implications of this research are presented in Part 2 (Kelly, in press). Part 1 discusses previous literature on information seeking context and behavior and situates the current work within this literature. This part further describes the naturalistic, longitudinal research design that was used to examine and measure the online information seeking contexts of users during a 14-week period. In this design, information seeking context was characterized by a user's self-identified tasks and topics, and several attributes of these, such as the length of time the user expected to work on a task and the user's familiarity with a topic. At weekly intervals, users evaluated the usefulness of the documents that they viewed, and classified these documents according to their tasks and topics. At the end of the study, users provided feedback about the study method.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.13, S.1729-1739
    Type
    a
  19. Shapiro, C.D.; Yan, P.-F.: Generous tools : thesauri in digital libraries (1996) 0.01
    0.008234787 = product of:
      0.020586967 = sum of:
        0.009535614 = weight(_text_:a in 3132) [ClassicSimilarity], result of:
          0.009535614 = score(doc=3132,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 3132, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3132)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 3132) [ClassicSimilarity], result of:
              0.022102704 = score(doc=3132,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 3132, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3132)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The Electronic Libraries and Information Highways MITRE Sponsored Research project aims to help searchers working in digital libraries increase their chance of matching the language of authors. Focuses on whether query formulation can be improved through the addition of semantic knowledge that is interactively gathered from a thesaurus that exists in a distributed, interoperating, cooperative environment. A prototype, ELVIS, was built that improves information retrieval through query expansion and is based on publicly available Z39.50 standard thesauri integrated with networked information discovery and retrieval tools
    Imprint
    Medford, NJ : Information Today
    Type
    a
  20. Robertson, A.M.; Willett, P.: Applications of n-grams in textual information systems (1998) 0.01
    0.008150326 = product of:
      0.020375814 = sum of:
        0.009437811 = weight(_text_:a in 4715) [ClassicSimilarity], result of:
          0.009437811 = score(doc=4715,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 4715, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4715)
        0.010938003 = product of:
          0.021876005 = sum of:
            0.021876005 = weight(_text_:information in 4715) [ClassicSimilarity], result of:
              0.021876005 = score(doc=4715,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2687516 = fieldWeight in 4715, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4715)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Provides an introduction to the use of n-grams in textual information systems, where an n-gram is a string of n, usually adjacent, characters, extracted from a section of continuous text. Applications that can be implemented efficiently and effectively using sets of n-grams include spelling errors detection and correction, query expansion, information retrieval with serial, inverted and signature files, dictionary look up, text compression, and language identification
    Type
    a

Years

Languages

  • e 201
  • d 31
  • chi 1
  • f 1
  • More… Less…