Search (17 results, page 1 of 1)

  • × theme_ss:"Social tagging"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Rolla, P.J.: User tags versus Subject headings : can user-supplied data improve subject access to library collections? (2009) 0.03
    0.025689062 = product of:
      0.051378123 = sum of:
        0.035838082 = weight(_text_:data in 3601) [ClassicSimilarity], result of:
          0.035838082 = score(doc=3601,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.29644224 = fieldWeight in 3601, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3601)
        0.015540041 = product of:
          0.031080082 = sum of:
            0.031080082 = weight(_text_:22 in 3601) [ClassicSimilarity], result of:
              0.031080082 = score(doc=3601,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.23214069 = fieldWeight in 3601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3601)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Some members of the library community, including the Library of Congress Working Group on the Future of Bibliographic Control, have suggested that libraries should open up their catalogs to allow users to add descriptive tags to the bibliographic data in catalog records. The web site LibraryThing currently permits its members to add such user tags to its records for books and therefore provides a useful resource to contrast with library bibliographic records. A comparison between the LibraryThing tags for a group of books and the library-supplied subject headings for the same books shows that users and catalogers approach these descriptors very differently. Because of these differences, user tags can enhance subject access to library materials, but they cannot entirely replace controlled vocabularies such as the Library of Congress subject headings.
    Date
    10. 9.2000 17:38:22
  2. Kim, H.L.; Scerri, S.; Breslin, J.G.; Decker, S.; Kim, H.G.: ¬The state of the art in tag ontologies : a semantic model for tagging and folksonomies (2008) 0.02
    0.017033914 = product of:
      0.03406783 = sum of:
        0.021117793 = weight(_text_:data in 2650) [ClassicSimilarity], result of:
          0.021117793 = score(doc=2650,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 2650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2650)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 2650) [ClassicSimilarity], result of:
              0.02590007 = score(doc=2650,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 2650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    There is a growing interest into how we represent and share tagging data in collaborative tagging systems. Conventional tags, meaning freely created tags that are not associated with a structured ontology, are not naturally suited for collaborative processes, due to linguistic and grammatical variations, as well as human typing errors. Additionally, tags reflect personal views of the world by individual users, and are not normalised for synonymy, morphology or any other mapping. Our view is that the conventional approach provides very limited semantic value for collaboration. Moreover, in cases where there is some semantic value, automatically sharing semantics via computer manipulations is extremely problematic. This paper explores these problems by discussing approaches for collaborative tagging activities at a semantic level, and presenting conceptual models for collaborative tagging activities and folksonomies. We present criteria for the comparison of existing tag ontologies and discuss their strengths and weaknesses in relation to these criteria.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. DeZelar-Tiedman, V.: Doing the LibraryThing(TM) in an academic library catalog (2008) 0.01
    0.013627131 = product of:
      0.027254261 = sum of:
        0.016894234 = weight(_text_:data in 2666) [ClassicSimilarity], result of:
          0.016894234 = score(doc=2666,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.1397442 = fieldWeight in 2666, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=2666)
        0.010360028 = product of:
          0.020720055 = sum of:
            0.020720055 = weight(_text_:22 in 2666) [ClassicSimilarity], result of:
              0.020720055 = score(doc=2666,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.15476047 = fieldWeight in 2666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2666)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Many libraries and other cultural institutions are incorporating Web 2.0 features and enhanced metadata into their catalogs (Trant 2006). These value-added elements include those typically found in commercial and social networking sites, such as book jacket images, reviews, and usergenerated tags. One such site that libraries are exploring as a model is LibraryThing (www.librarything.com) LibraryThing is a social networking site that allows users to "catalog" their own book collections. Members can add tags and reviews to records for books, as well as engage in online discussions. In addition to its service for individuals, LibraryThing offers a feebased service to libraries, where institutions can add LibraryThing tags, recommendations, and other features to their online catalog records. This poster will present data analyzing the quality and quantity of the metadata that a large academic library would expect to gain if utilizing such a service, focusing on the overlap between titles found in the library's catalog and in LibraryThing's database, and on a comparison between the controlled subject headings in the former and the user-generated tags in the latter. During February through April 2008, a random sample of 383 titles from the University of Minnesota Libraries catalog was searched in LibraryThing. Eighty works, or 21 percent of the sample, had corresponding records available in LibraryThing. Golder and Huberman (2006) outline the advantages and disadvantages of using controlled vocabulary for subject access to information resources versus the growing trend of tags supplied by users or by content creators. Using the 80 matched records from the sample, comparisons were made between the user-supplied tags in LibraryThing (social tags) and the subject headings in the library catalog records (controlled vocabulary system). In the library records, terms from all 6XX MARC fields were used. To make a more meaningful comparison, controlled subject terms were broken down into facets according to their headings and subheadings, and each unique facet counted separately. A total of 227 subject terms were applied to the 80 catalog records, an average of 2.84 per record. In LibraryThing, 698 tags were applied to the same 80 titles, an average of 8.73 per title. The poster will further explore the relationships between the terms applied in each source, and identify where overlaps and complementary levels of access occur.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Qin, J.: Controlled semantics versus social semantics : an epistemological analysis (2008) 0.01
    0.008959521 = product of:
      0.035838082 = sum of:
        0.035838082 = weight(_text_:data in 2269) [ClassicSimilarity], result of:
          0.035838082 = score(doc=2269,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.29644224 = fieldWeight in 2269, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2269)
      0.25 = coord(1/4)
    
    Content
    Social semantics is more than just tags or vocabularies. It involves the users who contribute the tags, the perceptions of the world, and intentions that the tags are created for. Whilst social semantics is a valuable, massive data source for developing new knowledge systems or validating existing ones, there are also pitfalls and uncertainties. The epistemological analysis presented in this paper is an attempt to explain the differences and connections between social and controlled semantics from the perspective of knowledge theory. The epistemological connection between social and controlled semantics is particularly important: empirical knowledge can provide data source for testing the rational knowledge and rational knowledge can provide reliability and predictability. Such connection will have significant implications for future research on social and controlled semantics.
  5. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.01
    0.008959521 = product of:
      0.035838082 = sum of:
        0.035838082 = weight(_text_:data in 3290) [ClassicSimilarity], result of:
          0.035838082 = score(doc=3290,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.29644224 = fieldWeight in 3290, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3290)
      0.25 = coord(1/4)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  6. Wolfram, D.; Olson, H.A.; Bloom, R.: Measuring consistency for multiple taggers using vector space modeling (2009) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 3113) [ClassicSimilarity], result of:
          0.02534135 = score(doc=3113,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 3113, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3113)
      0.25 = coord(1/4)
    
    Abstract
    A longstanding area of study in indexing is the identification of factors affecting vocabulary usage and consistency. This topic has seen a recent resurgence with a focus on social tagging. Tagging data for scholarly articles made available by the social bookmarking Website CiteULike (www.citeulike.org) were used to test the use of inter-indexer/tagger consistency density values, based on a method developed by the authors by comparing calculations for highly tagged documents representing three subject areas (Science, Social Science, Social Software). The analysis revealed that the developed method is viable for a large dataset. The findings also indicated that there were no significant differences in tagging consistency among the three topic areas, demonstrating that vocabulary usage in a relatively new subject area like social software is no more inconsistent than the more established subject areas investigated. The implications of the method used and the findings are discussed.
  7. Munk, T.B.; Moerk, K.: Folksonomies, tagging communities, and tagging strategies : an empirical study (2007) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 1091) [ClassicSimilarity], result of:
          0.021117793 = score(doc=1091,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 1091, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1091)
      0.25 = coord(1/4)
    
    Abstract
    The subject of this article is folksonomies on the Internet. One of the largest folksonomies on the Internet in terms of number of users and tagged websites is the computer program del.icio.us, where more than 100,000 people have tagged the websites that they and others find using their own keywords. How this is done in practice and the patterns to be found are the focus of this article. The empirical basis is the collection of 76,601 different keywords with a total frequency of 178,215 from 500 randomly chosen taggers on del.icio.us at the end of 2005. The keywords collected were then analyzed quantitatively statistically by uncovering their frequency and percentage distribution and through a statistical correspondence analysis in order to uncover possible patterns in the users' tags. Subsequently, a qualitative textual analysis of the tags was made in order to find out by analysis which tagging strategies are represented in the data material. This led to four conclusions. 1) the distribution of keywords follows classic power law; 2) distinct tagging communities are identifiable; 3) the most frequently used tags are situated on a general-specific axis; and 4) nine distinct tagging strategies are observed. These four conclusions are put into perspective collectively in respect of a number of more general and theoretical considerations concerning folksonomies and the classification systems of the future.
  8. Hammond, T.; Hannay, T.; Lund, B.; Flack, M.: Social bookmarking tools (II) : a case study - Connotea (2005) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 1189) [ClassicSimilarity], result of:
          0.021117793 = score(doc=1189,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 1189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1189)
      0.25 = coord(1/4)
    
    Abstract
    Connotea is a free online reference management and social bookmarking service for scientists created by Nature Publishing Group. While somewhat experimental in nature, Connotea already has a large and growing number of users, and is a real, fully functioning service. The label 'experimental' is not meant to imply that the service is any way ephemeral or esoteric, rather that the concept of social bookmarking itself and the application of that concept to reference management are both recent developments. Connotea is under active development, and we are still in the process of discovering how people will use it. In addition to Connotea being a free and public service, the core code is freely available under an open source license. Connotea was conceived from the outset as an online, social tool. Seeing the possibilities that del.icio.us was opening up for its users in the area of general web linking, we realised that scholarly reference management was a similar problem space. Connotea was designed and developed late in 2004, and soft-launched at the end of December 2004. Usage has grown over the past several months, to the point where there is now enough data in the system for interesting second-order effects to emerge. This paper will start by giving an overview of Connotea, and will outline the key concepts and describe its main features. We will then take the reader on a brief guided tour, show some of the aforementioned second-order effects, and end with a discussion of Connotea's likely future direction.
  9. Chopin, K.: Finding communities : alternative viewpoints through weblogs and tagging (2008) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 2341) [ClassicSimilarity], result of:
          0.021117793 = score(doc=2341,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 2341, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2341)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to discuss and test the claim that user-based tagging allows for access to a wider variety of viewpoints than is found using other forms of online searching. Design/methodology/approach - A general overview of the nature of weblogs and user-based tagging is given, along with other relevant concepts. A case is then analyzed where viewpoints towards a specific issue are searched for using both tag searching (Technorati) and general search engine searching (Google and Google Blog Search). Findings - The claim to greater accessibility through user-based tagging is not overtly supported with these experiments. Further results for both general and tag-specific searching goes against some common assumptions about the types of content found on weblogs as opposed to more general web sites. Research limitations/implications - User-based tagging is still not widespread enough to give conclusive data for analysis. As this changes, further research in this area, using a variety of search subjects, is warranted. Originality/value - Although proponents of user-based tagging attribute many qualities to the practice, these qualities have not been properly documented or demonstrated. This paper partially rectifies this gap by testing one of the claims made, that of accessibility to alternate views, thus adding to the discussion on tagging for both researchers and other interested parties.
  10. Müller-Prove, M.: Modell und Anwendungsperspektive des Social Tagging (2008) 0.01
    0.005180014 = product of:
      0.020720055 = sum of:
        0.020720055 = product of:
          0.04144011 = sum of:
            0.04144011 = weight(_text_:22 in 2882) [ClassicSimilarity], result of:
              0.04144011 = score(doc=2882,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.30952093 = fieldWeight in 2882, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2882)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.15-22
  11. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.00
    0.0045785285 = product of:
      0.018314114 = sum of:
        0.018314114 = product of:
          0.036628228 = sum of:
            0.036628228 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.036628228 = score(doc=2652,freq=4.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Harrer, A.; Lohmann, S.: Potenziale von Tagging als partizipative Methode für Lehrportale und E-Learning-Kurse (2008) 0.00
    0.0045325123 = product of:
      0.01813005 = sum of:
        0.01813005 = product of:
          0.0362601 = sum of:
            0.0362601 = weight(_text_:22 in 2889) [ClassicSimilarity], result of:
              0.0362601 = score(doc=2889,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.2708308 = fieldWeight in 2889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2889)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    21. 6.2009 12:22:44
  13. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.00
    0.0038850103 = product of:
      0.015540041 = sum of:
        0.015540041 = product of:
          0.031080082 = sum of:
            0.031080082 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.031080082 = score(doc=3387,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1. 8.2010 12:35:22
  14. Strader, C.R.: Author-assigned keywords versus Library of Congress Subject Headings : implications for the cataloging of electronic theses and dissertations (2009) 0.00
    0.0038850103 = product of:
      0.015540041 = sum of:
        0.015540041 = product of:
          0.031080082 = sum of:
            0.031080082 = weight(_text_:22 in 3602) [ClassicSimilarity], result of:
              0.031080082 = score(doc=3602,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.23214069 = fieldWeight in 3602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3602)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  15. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.00
    0.0032375087 = product of:
      0.012950035 = sum of:
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.02590007 = score(doc=2648,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  16. Bentley, C.M.; Labelle, P.R.: ¬A comparison of social tagging designs and user participation (2008) 0.00
    0.002590007 = product of:
      0.010360028 = sum of:
        0.010360028 = product of:
          0.020720055 = sum of:
            0.020720055 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
              0.020720055 = score(doc=2657,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.15476047 = fieldWeight in 2657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2657)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  17. Vander Wal, T.: Welcome to the Matrix! (2008) 0.00
    0.002590007 = product of:
      0.010360028 = sum of:
        0.010360028 = product of:
          0.020720055 = sum of:
            0.020720055 = weight(_text_:22 in 2881) [ClassicSimilarity], result of:
              0.020720055 = score(doc=2881,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.15476047 = fieldWeight in 2881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2881)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 6.2009 9:15:45