Search (22 results, page 1 of 2)

  • × theme_ss:"Suchmaschinen"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.03
    0.025585249 = product of:
      0.102340996 = sum of:
        0.06991638 = weight(_text_:web in 438) [ClassicSimilarity], result of:
          0.06991638 = score(doc=438,freq=24.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.6245262 = fieldWeight in 438, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.0058399485 = weight(_text_:information in 438) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=438,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
        0.026584659 = weight(_text_:system in 438) [ClassicSimilarity], result of:
          0.026584659 = score(doc=438,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.24605882 = fieldWeight in 438, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.25 = coord(3/12)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
    Object
    Semantic Web Search Engine
    Theme
    Semantic Web
  2. Li, Z.: ¬A domain specific search engine with explicit document relations (2013) 0.02
    0.02384824 = product of:
      0.09539296 = sum of:
        0.06054936 = weight(_text_:web in 1210) [ClassicSimilarity], result of:
          0.06054936 = score(doc=1210,freq=18.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.5408555 = fieldWeight in 1210, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.008258934 = weight(_text_:information in 1210) [ClassicSimilarity], result of:
          0.008258934 = score(doc=1210,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13714671 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.026584659 = weight(_text_:system in 1210) [ClassicSimilarity], result of:
          0.026584659 = score(doc=1210,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.24605882 = fieldWeight in 1210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
      0.25 = coord(3/12)
    
    Abstract
    The current web consists of documents that are highly heterogeneous and hard for machines to understand. The Semantic Web is a progressive movement of the Word Wide Web, aiming at converting the current web of unstructured documents to the web of data. In the Semantic Web, web documents are annotated with metadata using standardized ontology language. These annotated documents are directly processable by machines and it highly improves their usability and usefulness. In Ericsson, similar problems occur. There are massive documents being created with well-defined structures. Though these documents are about domain specific knowledge and can have rich relations, they are currently managed by a traditional search engine, which ignores the rich domain specific information and presents few data to users. Motivated by the Semantic Web, we aim to find standard ways to process these documents, extract rich domain specific information and annotate these data to documents with formal markup languages. We propose this project to develop a domain specific search engine for processing different documents and building explicit relations for them. This research project consists of the three main focuses: examining different domain specific documents and finding ways to extract their metadata; integrating a text search engine with an ontology server; exploring novel ways to build relations for documents. We implement this system and demonstrate its functions. As a prototype, the system provides required features and will be extended in the future.
    Theme
    Semantic Web
  3. Söhler, M.: "Dumm wie Google" war gestern : semantische Suche im Netz (2011) 0.02
    0.019310515 = product of:
      0.115863085 = sum of:
        0.02825637 = weight(_text_:web in 4440) [ClassicSimilarity], result of:
          0.02825637 = score(doc=4440,freq=8.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.25239927 = fieldWeight in 4440, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4440)
        0.08760671 = weight(_text_:suche in 4440) [ClassicSimilarity], result of:
          0.08760671 = score(doc=4440,freq=14.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.51116145 = fieldWeight in 4440, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4440)
      0.16666667 = coord(2/12)
    
    Abstract
    "Casablanca" bringt bei der Google-Suche Millionen Ergebnisse. Ist die Stadt gemeint oder der Film? Suchmaschinen sind dumm und schnell. Schema.org will das ändern.
    Content
    "6.500 Einzelsprachen so zu verstehen, dass noch die dümmsten Maschinen sie in all ihren Sätzen, Wörtern, Bedeutungen nicht nur erfassen, sondern auch verarbeiten können - das ist ein komplexer Vorgang, an dem große Teile des Internets inklusive fast aller Suchmaschinen bisher gescheitert sind. Wem schon der gerade gelesene Satz zu komplex erscheint, dem sei es einfacher ausgedrückt: Erstmal geht es um "Teekesselchen". Wörter haben oft mehrere Bedeutungen. Einige kennen den "Kanal" als künstliche Wasserstraße, andere kennen ihn vom Zappen am Fernsehgerät. Die Waage kann zum Erfassen des Gewichts nützlich sein oder zur Orientierung auf der Horoskopseite einer Zeitung. Casablanca ist eine Stadt und ein Film zugleich. Wo Menschen mit der Zeit zu unterscheiden lernen, lernen dies Suchmaschinen von selbst nicht. Nach einer entsprechenden Eingabe listen sie dumpf hintereinander weg alles auf, was sie zum Thema finden können. "Dumm wie Google", könnte man sagen, "doof wie Yahoo" oder "blöd wie Bing". Damit das nicht so bleibt, haben sich nun Google, Yahoo und die zu Microsoft gehörende Suchmaschine Bing zusammengetan, um der Suche im Netz mehr Verständnis zu verpassen. Man spricht dabei auch von einer "semantischen Suche". Das Ergebnis heißt Schema.org. Wer die Webseite einmal besucht, sich ein wenig in die Unterstrukturen hereinklickt und weder Vorkenntnisse im Programmieren noch im Bereich des semantischen Webs hat, wird sich überfordert und gelangweilt wieder abwenden.
    - Neue Standards Doch was hier entstehen könnte, hat das Zeug dazu, Teile des Netzes und speziell die Funktionen von Suchmaschinen mittel- oder langfristig zu verändern. "Große Player sind dabei, sich auf Standards zu einigen", sagt Daniel Bahls, Spezialist für Semantische Technologien beim ZBW Leibniz-Informationszentrum Wirtschaft in Hamburg. "Die semantischen Technologien stehen schon seit Jahren im Raum und wurden bisher nur im kleineren Kontext verwendet." Denn Schema.org lädt Entwickler, Forscher, die Semantic-Web-Community und am Ende auch alle Betreiber von Websites dazu ein, an der Umgestaltung der Suche im Netz mitzuwirken. "Damit wollen Google, Bing und Yahoo! dem Info-Chaos im WWW den Garaus machen", schreibt André Vatter im Blog ZBW Mediatalk. Inhalte von Websites sollen mit einem speziellen, aber einheitlichen Vokabular für die Crawler der Suchmaschinen gekennzeichnet und aufbereitet werden. Indem Schlagworte, so genannte Tags, in den Code von Websites eingebettet werden, sind Suchmachinen nicht mehr so sehr auf die Analyse der natürlichen Sprache angewiesen, um Texte inhaltlich zu erfassen. Im Blog wird dies als "Semantic Web light" bezeichnet - ein semantisches Web auf niedrigster Ebene. Aber selbst das werde "schon viel bewirken", meint Bahls. "Das semantische Web wird sich über die nächsten Jahrzehnte evolutionär weiterentwickeln." Einen "Abschluss" werde es nie geben, "da eine einheitliche Formalisierung von Begrifflichkeiten auf feiner Stufe kaum möglich ist."
    - "Gemeinsames Format für strukturierte Daten" Aber warum sollten Google, Yahoo und Bing plötzlich zusammenarbeiten, wo doch bisher die Konkurrenz das Verhältnis prägte? Stefan Keuchel, Pressesprecher von Google Deutschland, betont, alle beteiligten Unternehmen wollten "ein deutliches Zeichen setzen, um die Qualität der Suche zu verbessern". Man entwickele "ein gemeinsames Format für strukturierte Daten, mit dem Dinge ermöglicht werden, die heute noch nicht möglich sind - Stichwort: semantische Suche". Die Ergebnisse aus Schema.org würden "zeitnah" in die Suchmaschine integriert, "denn einen Zeitplan" gebe es nicht. "Erst mit der Einigung auf eine gemeinsame Sprache können Suchmaschinen einen Mehrwert durch semantische Technologien generieren", antwortet Daniel Bahls auf die Frage nach Gemeinsamkeit und Konkurrenz der Suchmaschinen. Er weist außerdem darauf hin, dass es bereits die semantische Suchmaschine Sig.ma gibt. Geschwindigkeit und Menge der Ergebnisse nach einer Suchanfrage spielen hier keine Rolle. Sig.ma sammelt seine Informationen allein im Bereich des semantischen Webs und listet nach einer Anfrage alles Bekannte strukturiert auf."
  4. Söhler, M.: Schluss mit Schema F (2011) 0.02
    0.016941646 = product of:
      0.10164987 = sum of:
        0.036104664 = weight(_text_:web in 4439) [ClassicSimilarity], result of:
          0.036104664 = score(doc=4439,freq=10.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.32250395 = fieldWeight in 4439, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4439)
        0.06554521 = weight(_text_:suche in 4439) [ClassicSimilarity], result of:
          0.06554521 = score(doc=4439,freq=6.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.38243857 = fieldWeight in 4439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03125 = fieldNorm(doc=4439)
      0.16666667 = coord(2/12)
    
    Abstract
    Mit Schema.org und dem semantischen Web sollen Suchmaschinen verstehen lernen
    Content
    "Wörter haben oft mehrere Bedeutungen. Einige kennen den "Kanal" als künstliche Wasserstraße, andere vom Fernsehen. Die Waage kann zum Erfassen des Gewichts nützlich sein oder zur Orientierung auf der Horoskopseite. Casablanca ist eine Stadt und ein Film zugleich. Wo Menschen mit der Zeit Bedeutungen unterscheiden und verarbeiten lernen, können dies Suchmaschinen von selbst nicht. Stets listen sie dumpf hintereinander weg alles auf, was sie zu einem Thema finden. Damit das nicht so bleibt, haben sich nun Google, Yahoo und die zu Microsoft gehörende Suchmaschine Bing zusammengetan, um der Suche im Netz mehr Verständnis zu verpassen. Man spricht dabei auch von einer "semantischen Suche". Das Ergebnis heißt Schema.org. Wer die Webseite einmal besucht, sich ein wenig in die Unterstrukturen hereinklickt und weder Vorkenntnisse im Programmieren noch im Bereich des semantischen Webs hat, wird sich überfordert und gelangweilt wieder abwenden. Doch was hier entstehen könnte, hat das Zeug dazu, Teile des Netzes und speziell die Funktionen von Suchmaschinen mittel- oder langfristig zu verändern. "Große Player sind dabei, sich auf Standards zu einigen", sagt Daniel Bahls, Spezialist für Semantische Technologien beim ZBW Leibniz-Informationszentrum Wirtschaft in Hamburg. "Die semantischen Technologien stehen schon seit Jahren im Raum und wurden bisher nur im kleineren Kontext verwendet." Denn Schema.org lädt Entwickler, Forscher, die Semantic-Web-Community und am Ende auch alle Betreiber von Websites dazu ein, an der Umgestaltung der Suche im Netz mitzuwirken. Inhalte von Websites sollen mit einem speziellen, aber einheitlichen Vokabular für die Crawler - die Analyseprogramme der Suchmaschinen - gekennzeichnet und aufbereitet werden.
    Indem Schlagworte, sogenannte Tags, in den für Normal-User nicht sichtbaren Teil des Codes von Websites eingebettet werden, sind Suchmachinen nicht mehr so sehr auf die Analyse der natürlichen Sprache angewiesen, um Texte inhaltlich zu erfassen. Im Blog ZBW Mediatalk wird dies als "Semantic Web light" bezeichnet - ein semantisches Web auf niedrigster Ebene. Aber selbst das werde "schon viel bewirken", meint Bahls. "Das semantische Web wird sich über die nächsten Jahrzehnte evolutionär weiterentwickeln." Einen "Abschluss" werde es nie geben, "da eine einheitliche Formalisierung von Begrifflichkeiten auf feiner Stufe kaum möglich ist". Die Ergebnisse aus Schema.org würden "zeitnah" in die Suchmaschine integriert, "denn einen Zeitplan" gebe es nicht, so Stefan Keuchel, Pressesprecher von Google Deutschland. Bis das so weit ist, hilft der Verweis von Daniel Bahns auf die bereits existierende semantische Suchmaschine Sig.ma. Geschwindigkeit und Menge der Ergebnisse nach einer Suchanfrage spielen hier keine Rolle. Sig.ma sammelt seine Informationen allein im Bereich des semantischen Webs und listet nach einer Anfrage alles Bekannte strukturiert auf.
  5. Mandalka, M.: Open semantic search zum unabhängigen und datenschutzfreundlichen Erschliessen von Dokumenten (2015) 0.02
    0.01517371 = product of:
      0.09104226 = sum of:
        0.07509147 = weight(_text_:suche in 2133) [ClassicSimilarity], result of:
          0.07509147 = score(doc=2133,freq=14.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.4381384 = fieldWeight in 2133, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2133)
        0.015950793 = weight(_text_:system in 2133) [ClassicSimilarity], result of:
          0.015950793 = score(doc=2133,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.14763528 = fieldWeight in 2133, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2133)
      0.16666667 = coord(2/12)
    
    Content
    Automatische Texterkennung (OCR) Dokumente, die nicht im Textformat, sondern als Grafiken vorliegen, wie z.B. Scans werden automatisch durch automatische Texterkennung (OCR) angereichert und damit auch der extrahierte Text durchsuchbar. Auch für eingebettete Bilddateien bzw. Scans innerhalb von PDF-Dateien. Unscharfe Suche mit Listen Ansonsten ist auch das Recherche-Tool bzw. die Such-Applikation "Suche mit Listen" integriert, mit denen sich schnell und komfortabel abgleichen lässt, ob es zu den einzelnen Einträgen in Listen jeweils Treffer in der durchsuchbaren Dokumentensammlung gibt. Mittels unscharfer Suche findet das Tool auch Ergebnisse, die in fehlerhaften oder unterschiedlichen Schreibweisen vorliegen. Semantische Suche und Textmining Im Recherche, Textanalyse und Document Mining Tutorial zu den enthaltenen Recherche-Tools und verschiedenen kombinierten Methoden zur Datenanalyse, Anreicherung und Suche wird ausführlicher beschrieben, wie auch eine große heterogene und unstrukturierte Dokumentensammlung bzw. eine grosse Anzahl von Dokumenten in verschiedenen Formaten leicht durchsucht und analysiert werden kann.
    Virtuelle Maschine für mehr Plattformunabhängigkeit Die nun auch deutschsprachig verfügbare und mit deutschen Daten wie Ortsnamen oder Bundestagsabgeordneten vorkonfigurierte virtuelle Maschine Open Semantic Desktop Search ermöglicht nun auch auf einzelnen Desktop Computern oder Notebooks mit Windows oder iOS (Mac) die Suche und Analyse von Dokumenten mit der Suchmaschine Open Semantic Search. Als virtuelle Maschine (VM) lässt sich die Suchmaschine Open Semantic Search nicht nur für besonders sensible Dokumente mit dem verschlüsselten Live-System InvestigateIX als abgeschottetes System auf verschlüsselten externen Datenträgern installieren, sondern als virtuelle Maschine für den Desktop auch einfach unter Windows oder auf einem Mac in eine bzgl. weiterer Software und Daten bereits existierende Systemumgebung integrieren, ohne hierzu auf einen (für gemeinsame Recherchen im Team oder für die Redaktion auch möglichen) Suchmaschinen Server angewiesen zu sein. Datenschutz & Unabhängigkeit: Grössere Unabhängigkeit von zentralen IT-Infrastrukturen für unabhängigen investigativen Datenjournalismus Damit ist investigative Recherche weitmöglichst unabhängig möglich: ohne teure, zentrale und von Administratoren abhängige Server, ohne von der Dokumentenanzahl abhängige teure Software-Lizenzen, ohne Internet und ohne spionierende Cloud-Dienste. Datenanalyse und Suche finden auf dem eigenen Computer statt, nicht wie bei vielen anderen Lösungen in der sogenannten Cloud."
  6. Weigert, M.: Horizobu: Webrecherche statt Websuche (2011) 0.01
    0.01231496 = product of:
      0.07388976 = sum of:
        0.017125946 = weight(_text_:web in 4443) [ClassicSimilarity], result of:
          0.017125946 = score(doc=4443,freq=4.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.15297705 = fieldWeight in 4443, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4443)
        0.056763813 = weight(_text_:suche in 4443) [ClassicSimilarity], result of:
          0.056763813 = score(doc=4443,freq=8.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.3312015 = fieldWeight in 4443, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4443)
      0.16666667 = coord(2/12)
    
    Content
    "Das Problem mit der Suchmaschinen-Optimierung Suchmaschinen sind unser Instrument, um mit der Informationsflut im Internet klar zu kommen. Wie ich in meinem Artikel Die kürzeste Anleitung zur Suchmaschinenoptimierung aller Zeiten ausgeführt habe, gibt es dabei leider das Problem, dass der Platzhirsch Google nicht wirklich die besten Suchresultate liefert: Habt ihr schon mal nach einem Hotel, einem Restaurant oder einer anderen Location gesucht - und die ersten vier Ergebnis-Seiten sind voller Location-Aggregatoren? Wenn ich ganz spezifisch nach einem Hotel soundso in der Soundso-Strasse suche, dann finde ich, das relevanteste Ergebnis ist die Webseite dieses Hotels. Das gehört auf Seite 1 an Platz 1. Dort aber finden sich nur die Webseiten, die ganz besonders dolle suchmaschinenoptimiert sind. Wobei Google Webseiten als am suchmaschinenoptimiertesten einstuft, wenn möglichst viele Links darauf zeigen und der Inhalt relevant sein soll. Die Industrie der Suchmaschinen-Optimierer erreicht dies dadurch, dass sie folgende Dinge machen: - sie lassen Programme und Praktikanten im Web rumschwirren, die sich überall mit hirnlosen Kommentaren verewigen (Hauptsache, die sind verlinkt und zeigen auf ihre zu pushende Webseite) - sie erschaffen geistlose Blogs, in denen hirnlose Texte stehen (Hauptsache, die Keyword-Dichte stimmt) - diese Texte lassen sie durch Schüler und Praktikanten oder gleich durch Software schreiben - Dann kommt es anscheinend noch auf Keywords im Titel, in der URL etc. an.
    All das führt zu folgenden negativen Begleiterscheinungen: - die meisten Kommentare heutzutage kriegt man nur noch des Links wegen: der eigentliche Sinn ist gleich Null - es gibt mittlerweile haufenweise Inhalte und ganze Blogs im Web, deren Ziel nur ist, von Google-Bots auf ihre Keyword-Dichte geprüft zu werden - aus meiner Sicht funktionieren SEO-Optimierungs-Unternehmen wie Schneeballsysteme: oben wird durch die Geschäftsführer Kohle gescheffelt, unten wird von den Praktikanten für wenig Geld sinnlos geschuftet. Aus meiner Sicht trägt Google zu diesen negativen Folgen sehr viel bei. Google legt nicht offen, sie sein Suchalgorithmus funktioniert - und es fördert damit diese Überflutung des Webs mit sinnlosen Kommentaren und Inhalten. Wie Du langsam aber sicher merkst, bin ich nicht der allergrößte Fan von Google (ich hoffe, die lesen das nicht - in Deutschland erfolgen mehr als 95% aller Suchen mit Google und ich will ja, dass der Denkpass weiterhin gut und leicht gefunden wird). horizobu - Nicht suchen, sondern recherchieren Nun ist horizobu nicht wirklich anders, zumindest in dieser Hinsicht. Aber es ist anders darin, wie es mit Suchergebnissen umgeht. Wenn Du etwas suchst, erscheinen sechs möglichst relevante Ergebnisse in einem großen Rahmen. Falls Dir diese Ergebnisse nicht zusagen, kannst Du sie einzeln (durch Klick auf das Kreuz an jedem Ergebnis) oder mehrere oder alle (durch Klick auf More) austauschen und durch die nächsten Ergebnisse ersetzen lassen. An jedem der sechs Ergebnisse gibt es auch eine Nadel zum Fixieren - dann kannst Du die anderen austauschen und dieses Ergebnis bleibt.
    Auch mit der Maus kannst Du die Ergebnisse bearbeiten - nach links geschoben, verschwinden sie. Nach rechts geschoben, landen sie in einem Container, der die von Dir ausgesuchten, wichtigsten Links sammelt. Diese Sammlung kannst Du anschliessend mit einem Klick per Facebook oder Twitter teilen, als Link zur Verfügung stellen (hier z.B. mein Link für eine kurze Recherche über Schlafen im Büro) oder alle dort gesammelten Links in neuen Browser-Tabs öffnen. Die Links bleiben übrigens erhalten, selbst wenn Du eine neue Suche beginnst. Oben, über den Ergebnissen, wartet horizobu mit zehn aus seiner Sicht relevanten Suchbegriffen auf, die Deiner Suche entsprechen. Nicht alle sind angeklickt - schaltest Du weitere an oder aus, verändern sich sofort Deine Ergebnisse. Du kannst auch weitere Schlagwörter eingeben, um Deiner Recherche eine neue Richtung zu geben. Ich bin beeindruckt, weil horizobu recherchieren ermöglicht, wo Google nur suchen erlaubt. Dazu kommt, dass horizobu bislang werbefrei ist, was ich auch nicht schlecht finde (obwohl ich, unter uns gesagt, noch nie bewusst auf eine Werbung geklickt habe). Es macht Spaß - ich suche ab jetzt mit horizobu."
  7. Lewandowski, D.: Wie "Next Generation Search Systems" die Suche auf eine neue Ebene heben und die Informationswelt verändern (2017) 0.01
    0.008919573 = product of:
      0.10703488 = sum of:
        0.10703488 = weight(_text_:suche in 3611) [ClassicSimilarity], result of:
          0.10703488 = score(doc=3611,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.6245195 = fieldWeight in 3611, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0625 = fieldNorm(doc=3611)
      0.083333336 = coord(1/12)
    
    Abstract
    Suchmaschinen befinden sich einerseits in einem beständigen Wandel. Andererseits gibt es immer wieder Entwicklungen, die die Suche "auf eine neue Ebene" heben. Eine solche Entwicklung, die wir zurzeit erleben, wird unter dem Label "Next Generation Search Systems" geführt. Der Begriff fasst die Veränderungen durch eine Vielfalt von Geräten und Eingabemöglichkeiten, die Verfügbarkeit von Verhaltensdaten en masse und den Wandel von Dokumenten zu Antworten zusammen.
  8. What is Schema.org? (2011) 0.01
    0.008643426 = product of:
      0.051860552 = sum of:
        0.04194983 = weight(_text_:web in 4437) [ClassicSimilarity], result of:
          0.04194983 = score(doc=4437,freq=6.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.37471575 = fieldWeight in 4437, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4437)
        0.009910721 = weight(_text_:information in 4437) [ClassicSimilarity], result of:
          0.009910721 = score(doc=4437,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16457605 = fieldWeight in 4437, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4437)
      0.16666667 = coord(2/12)
    
    Abstract
    This site provides a collection of schemas, i.e., html tags, that webmasters can use to markup their pages in ways recognized by major search providers. Search engines including Bing, Google and Yahoo! rely on this markup to improve the display of search results, making it easier for people to find the right web pages. Many sites are generated from structured data, which is often stored in databases. When this data is formatted into HTML, it becomes very difficult to recover the original structured data. Many applications, especially search engines, can benefit greatly from direct access to this structured data. On-page markup enables search engines to understand the information on web pages and provide richer search results in order to make it easier for users to find relevant information on the web. Markup can also enable new tools and applications that make use of the structure. A shared markup vocabulary makes easier for webmasters to decide on a markup schema and get the maximum benefit for their efforts. So, in the spirit of sitemaps.org, Bing, Google and Yahoo! have come together to provide a shared collection of schemas that webmasters can use.
  9. Hodson, H.: Google's fact-checking bots build vast knowledge bank (2014) 0.01
    0.006939485 = product of:
      0.04163691 = sum of:
        0.032292992 = weight(_text_:web in 1700) [ClassicSimilarity], result of:
          0.032292992 = score(doc=1700,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.2884563 = fieldWeight in 1700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=1700)
        0.009343918 = weight(_text_:information in 1700) [ClassicSimilarity], result of:
          0.009343918 = score(doc=1700,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.1551638 = fieldWeight in 1700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1700)
      0.16666667 = coord(2/12)
    
    Abstract
    The search giant is automatically building Knowledge Vault, a massive database that could give us unprecedented access to the world's facts GOOGLE is building the largest store of knowledge in human history - and it's doing so without any human help. Instead, Knowledge Vault autonomously gathers and merges information from across the web into a single base of facts about the world, and the people and objects in it.
  10. Schaer, P.; Mayr, P.; Sünkler, S.; Lewandowski, D.: How relevant is the long tail? : a relevance assessment study on million short (2016) 0.01
    0.00679969 = product of:
      0.04079814 = sum of:
        0.03495819 = weight(_text_:web in 3144) [ClassicSimilarity], result of:
          0.03495819 = score(doc=3144,freq=6.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.3122631 = fieldWeight in 3144, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3144)
        0.0058399485 = weight(_text_:information in 3144) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=3144,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 3144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3144)
      0.16666667 = coord(2/12)
    
    Abstract
    Users of web search engines are known to mostly focus on the top ranked results of the search engine result page. While many studies support this well known information seeking pattern only few studies concentrate on the question what users are missing by neglecting lower ranked results. To learn more about the relevance distributions in the so-called long tail we conducted a relevance assessment study with the Million Short long-tail web search engine. While we see a clear difference in the content between the head and the tail of the search engine result list we see no statistical significant differences in the binary relevance judgments and weak significant differences when using graded relevance. The tail contains different but still valuable results. We argue that the long tail can be a rich source for the diversification of web search engine result lists but it needs more evaluation to clearly describe the differences.
  11. ¬Der Google Hummingbird Algorithmus : semantisch-holistische Suche (2013) 0.01
    0.0063070906 = product of:
      0.075685084 = sum of:
        0.075685084 = weight(_text_:suche in 2521) [ClassicSimilarity], result of:
          0.075685084 = score(doc=2521,freq=2.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.441602 = fieldWeight in 2521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0625 = fieldNorm(doc=2521)
      0.083333336 = coord(1/12)
    
  12. Zhao, Y.; Ma, F.; Xia, X.: Evaluating the coverage of entities in knowledge graphs behind general web search engines : Poster (2017) 0.01
    0.005730532 = product of:
      0.034383193 = sum of:
        0.028543243 = weight(_text_:web in 3854) [ClassicSimilarity], result of:
          0.028543243 = score(doc=3854,freq=4.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.25496176 = fieldWeight in 3854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3854)
        0.0058399485 = weight(_text_:information in 3854) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=3854,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 3854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3854)
      0.16666667 = coord(2/12)
    
    Abstract
    Web search engines, such as Google and Bing, are constantly employing results from knowledge organization and various visualization features to improve their search services. Knowledge graph, a large repository of structured knowledge represented by formal languages such as RDF (Resource Description Framework), is used to support entity search feature of Google and Bing (Demartini, 2016). When a user searchs for an entity, such as a person, an organization, or a place in Google or Bing, it is likely that a knowledge cardwill be presented on the right side bar of the search engine result pages (SERPs). For example, when a user searches the entity Benedict Cumberbatch on Google, the knowledge card will show the basic structured information about this person, including his date of birth, height, spouse, parents, and his movies, etc. The knowledge card, which is used to present the result of entity search, is generated from knowledge graphs. Therefore, the quality of knowledge graphs is essential to the performance of entity search. However, studies on the quality of knowledge graphs from the angle of entity coverage are scant in the literature. This study aims to investigate the coverage of entities of knowledge graphs behind Google and Bing.
  13. Kopp, O.: Google Hummingbird-Algorithmus-Update : Infos & Hintergründe (2013) 0.01
    0.005518704 = product of:
      0.06622445 = sum of:
        0.06622445 = weight(_text_:suche in 2522) [ClassicSimilarity], result of:
          0.06622445 = score(doc=2522,freq=2.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.38640174 = fieldWeight in 2522, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2522)
      0.083333336 = coord(1/12)
    
    Abstract
    Pünktlich zum 15. Geburtstag der Google Suche verkündete Google gestern auf einer Pressekonferenz in der "Gründungs-Garage", dass das bedeutendste Google Update seit dem Caffeine Update im Jahr 2010 und größte Algorithmus-Update seit 2001 schon seit ca. einem Monat aktiv ist. Das aktuelle Update heißt Hummingbird zu deutsch Kollibri. Es soll ca. 90% aller Suchanfragen betreffen und soll im Vergleich zu Caffeine ein echtes Algorithmus-Update sein. Es soll dabei helfen komplexere Suchanfragen besser zu deuten und noch besser die eigentliche Suchintention bzw. Fragestellung hinter einer Suchanfrage zu erkennen sowie passende Dokumente dazu anzubieten. Auch auf Dokumentenebene soll die eigentliche Intention hinter dem Content besser mit der Suchanfrage gematcht werden.
  14. mho: Google erweitert Suchfunktion um Informationsdatenbank (2012) 0.00
    0.0044597867 = product of:
      0.05351744 = sum of:
        0.05351744 = weight(_text_:suche in 136) [ClassicSimilarity], result of:
          0.05351744 = score(doc=136,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.31225976 = fieldWeight in 136, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03125 = fieldNorm(doc=136)
      0.083333336 = coord(1/12)
    
    Content
    Zu guter Letzt kündigt Google seinen Nutzern dank der neuen Informationsdatenbank überraschende Erkenntnisse an: Verantwortlich dafür seien Verbindungen, an die Nutzer nicht gedacht hätten. Beispielsweise würde die Anzeige der Namen der engsten Verwandten von Matt Groening ganz neue Einblicke in die Inspiration für seine Simpsons liefern. Außerdem könne Google nun öfter bereits die nächste Frage beantworten, die ein Nutzer der Suchmaschine stellen würde. Eine Suche nach Tom Cruise könne dank des Knowledge Graph beispielsweise jede dritte der danach gestellten Fragen bereits beantworten. Die neue Funktion wurde auch für die Suche auf Smartphones und Tablets angepasst, wie Junyoung Lee in einem eigenen Blogeintrag [http://insidesearch.blogspot.de/2012/05/knowledge-graph-for-mobile-and-tablet.html] erläutert. Integriert werde sie hier in die Browsersuche und in die Apps, sowohl auf Android als auch iOS. Eingeführt wird die neue Funktion derzeit schrittweise für englischsprachige Nutzer in den USA, wie Amit Singhal mitteilt. Zu anderen Sprachen und Ländern macht er keine Angabe."
  15. Weigert, M.: Erkunden statt suchen : HORIZOBU (2011) 0.00
    0.0039023133 = product of:
      0.04682776 = sum of:
        0.04682776 = weight(_text_:suche in 4442) [ClassicSimilarity], result of:
          0.04682776 = score(doc=4442,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.2732273 = fieldWeight in 4442, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4442)
      0.083333336 = coord(1/12)
    
    Content
    Wer bei horizobu, das in einer englischsprachigen und einer deutschsprachigen Version (für die Schweiz) angeboten wird, nach einem bestimmten Begriff sucht, dem präsentiert der Dienst lediglich sechs möglichst relevante Ergebnisse in voneinander separierten Boxen. Einzelne dieser Boxen lassen sich löschen, wodurch ein weiteres Suchergebnis ans Tageslicht befördert wird. Mit einem Klick auf "More" wechselt man alle sechs Resultate aus. Gefällige Resultate lassen sich per Drag-And-Drop in der rechten Spalte ablegen und für später aufbewahren. Um seinem Entdeckeranspruch gerecht zu werden, listet horizobu oberhalb der Suchergebnisse zehn mit dem jeweiligen Suchwort verwandte Begriffe, die beliebig kombinierbar zur Verfeinerung und Erweiterung der bisherigen Suche verwendet werden können. Inspiriert durch die Vorschläge haben User auch die Möglichkeit, weitere Begriffe zur Eingrenzung hinzufügen. "Die Intelligenz aus Social Software führt teilweise zu überraschenden Fundstücken, die bislang mit herkömmlichen Suchmaschinen kaum erschlossen wurden", so Werner Hartmann, Titularprofessor der ETH Zürich und einer der zwei Gründer von horizobu. Nachdem Nutzer mit den Resultaten ihrer Recherche zufrieden sind und diese womöglich mit der Bookmarking-Funktion gespeichert haben, kann die so entstandene Linksammlung direkt über einen eindeutigen Link weiterversendet werden (das sieht z.B. so aus). Diese Funktion ist zwar nicht revolutionär, aber simpel, intuitiv und erfordert wenige Klicks.
    horizobu richtet sich laut Mitgründer Werner Hartmann vor allem an Personen, die zu einem Thema eine vertiefende Recherche durchführen wollen, also Journalisten, Wissenschaftler, Geschäftsleute oder Studenten. Für das Kinoprogramm von heute Abend oder die nächste Zugverbindung gebe es hingegen geeignetere Dienste. Hartmann und sein Kompagnon Sam Zürcher haben die Entwicklung von horizobu aus eigenen Mittel finanziert und bezeichnen es in seiner jetzigen Form als "Garagenprojekt". In der nächsten Phase wollen sie versuchen, interessierte Geldgeber zu finden, die so die Professionalisierung der Idee - also erweiterte Suchfunktionen, bessere Performance, länderspezifische Varianten usw. - unterstützen. Die Monetarisierung soll sowohl durch eine Werbevermarktung als auch eine Lizensierung der zugrundeliegenden Technologie realisiert werden. Allerdings wollen die zwei Jungunternehmer erst sehen, ob sich ihr Projekt am Markt etablieren kann. Diese Haltung ist nachvollziehbar. Denn angesichts der festen Verankerung von Google im Bewusstsein nahezu aller Internetnutzer erfordert es von jedem Anwender den bewussten Entschluss, zur Abwechslung über horizobu, Blekko, DuckDuckGo oder einen anderen Anbieter zu suchen. Und wenn dies dann nicht auf Anhieb perfekt funktioniert, ist die Wahrscheinlichkeit gering, dass sich User erneut dort blicken lassen. Die Marktchancen für horizobu stehen also eher ungünstig. Andererseits ziehe ich den Hut vor Gründern, die sich an das schwierige, weil stark von einem Anbieter dominierte Thema Suche heranwagen. Und als Nutzer kann man nur dann die Qualität einer Suchmaschine objektiv beurteilen, wenn das Vergleichen möglich ist. Allein das ist eine Daseinsberechtigung für alternative Ansätze."
  16. Hurz, S.: Google verfolgt Nutzer, auch wenn sie explizit widersprechen (2018) 0.00
    0.0033638533 = product of:
      0.04036624 = sum of:
        0.04036624 = weight(_text_:web in 4404) [ClassicSimilarity], result of:
          0.04036624 = score(doc=4404,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.36057037 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=4404)
      0.083333336 = coord(1/12)
    
    Abstract
    Wenn Google-Nutzer den Standortverlauf ausschalten, speichert das Unternehmen trotzdem Bewegungsdaten. Betroffen sind mehr als zwei Milliarden Menschen, die Android-Smartphones oder iPhones mit Google-Diensten verwenden. Wer das Tracking verhindern will, muss die "Web- und App-Aktivitäten" komplett deaktivieren.
  17. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.00
    0.0015492341 = product of:
      0.01859081 = sum of:
        0.01859081 = product of:
          0.03718162 = sum of:
            0.03718162 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.03718162 = score(doc=1149,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    17.12.2013 11:02:22
  18. Schaat, S.: Von der automatisierten Manipulation zur Manipulation der Automatisierung (2019) 0.00
    0.0015492341 = product of:
      0.01859081 = sum of:
        0.01859081 = product of:
          0.03718162 = sum of:
            0.03718162 = weight(_text_:22 in 4996) [ClassicSimilarity], result of:
              0.03718162 = score(doc=4996,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.30952093 = fieldWeight in 4996, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4996)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    19. 2.2019 17:22:00
  19. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.00
    9.7332476E-4 = product of:
      0.011679897 = sum of:
        0.011679897 = weight(_text_:information in 928) [ClassicSimilarity], result of:
          0.011679897 = score(doc=928,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19395474 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
      0.083333336 = coord(1/12)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
  20. Gillitzer, B.: Yewno (2017) 0.00
    7.746171E-4 = product of:
      0.009295405 = sum of:
        0.009295405 = product of:
          0.01859081 = sum of:
            0.01859081 = weight(_text_:22 in 3447) [ClassicSimilarity], result of:
              0.01859081 = score(doc=3447,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.15476047 = fieldWeight in 3447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3447)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    22. 2.2017 10:16:49