Search (94 results, page 2 of 5)

  • × theme_ss:"Suchmaschinen"
  • × year_i:[2010 TO 2020}
  1. Söhler, M.: Schluss mit Schema F (2011) 0.01
    0.0110648805 = product of:
      0.044259522 = sum of:
        0.044259522 = weight(_text_:standards in 4439) [ClassicSimilarity], result of:
          0.044259522 = score(doc=4439,freq=2.0), product of:
            0.22470023 = queryWeight, product of:
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.050415643 = queryNorm
            0.19697142 = fieldWeight in 4439, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4569545 = idf(docFreq=1393, maxDocs=44218)
              0.03125 = fieldNorm(doc=4439)
      0.25 = coord(1/4)
    
    Content
    "Wörter haben oft mehrere Bedeutungen. Einige kennen den "Kanal" als künstliche Wasserstraße, andere vom Fernsehen. Die Waage kann zum Erfassen des Gewichts nützlich sein oder zur Orientierung auf der Horoskopseite. Casablanca ist eine Stadt und ein Film zugleich. Wo Menschen mit der Zeit Bedeutungen unterscheiden und verarbeiten lernen, können dies Suchmaschinen von selbst nicht. Stets listen sie dumpf hintereinander weg alles auf, was sie zu einem Thema finden. Damit das nicht so bleibt, haben sich nun Google, Yahoo und die zu Microsoft gehörende Suchmaschine Bing zusammengetan, um der Suche im Netz mehr Verständnis zu verpassen. Man spricht dabei auch von einer "semantischen Suche". Das Ergebnis heißt Schema.org. Wer die Webseite einmal besucht, sich ein wenig in die Unterstrukturen hereinklickt und weder Vorkenntnisse im Programmieren noch im Bereich des semantischen Webs hat, wird sich überfordert und gelangweilt wieder abwenden. Doch was hier entstehen könnte, hat das Zeug dazu, Teile des Netzes und speziell die Funktionen von Suchmaschinen mittel- oder langfristig zu verändern. "Große Player sind dabei, sich auf Standards zu einigen", sagt Daniel Bahls, Spezialist für Semantische Technologien beim ZBW Leibniz-Informationszentrum Wirtschaft in Hamburg. "Die semantischen Technologien stehen schon seit Jahren im Raum und wurden bisher nur im kleineren Kontext verwendet." Denn Schema.org lädt Entwickler, Forscher, die Semantic-Web-Community und am Ende auch alle Betreiber von Websites dazu ein, an der Umgestaltung der Suche im Netz mitzuwirken. Inhalte von Websites sollen mit einem speziellen, aber einheitlichen Vokabular für die Crawler - die Analyseprogramme der Suchmaschinen - gekennzeichnet und aufbereitet werden.
  2. Milonas, E.: ¬An examination of facets within search engine result pages (2017) 0.01
    0.010621051 = product of:
      0.042484205 = sum of:
        0.042484205 = product of:
          0.08496841 = sum of:
            0.08496841 = weight(_text_:organization in 4160) [ClassicSimilarity], result of:
              0.08496841 = score(doc=4160,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.47270393 = fieldWeight in 4160, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4160)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Dimensions of knowledge: facets for knowledge organization. Eds.: R.P. Smiraglia, u. H.-L. Lee
  3. Bressan, M.; Peserico, E.: Choose the damping, choose the ranking? (2010) 0.01
    0.010513837 = product of:
      0.021027675 = sum of:
        0.006866273 = weight(_text_:information in 2563) [ClassicSimilarity], result of:
          0.006866273 = score(doc=2563,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 2563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2563)
        0.014161401 = product of:
          0.028322803 = sum of:
            0.028322803 = weight(_text_:organization in 2563) [ClassicSimilarity], result of:
              0.028322803 = score(doc=2563,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15756798 = fieldWeight in 2563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2563)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    To what extent can changes in PageRank's damping factor affect node ranking? We prove that, at least on some graphs, the top k nodes assume all possible k! orderings as the damping factor varies, even if it varies within an arbitrarily small interval (e.g. [0.84999,0.85001][0.84999,0.85001]). Thus, the rank of a node for a given (finite set of discrete) damping factor(s) provides very little information about the rank of that node as the damping factor varies over a continuous interval. We bypass this problem introducing lineage analysis and proving that there is a simple condition, with a "natural" interpretation independent of PageRank, that allows one to verify "in one shot" if a node outperforms another simultaneously for all damping factors and all damping variables (informally, time variant damping factors). The novel notions of strong rank and weak rank of a node provide a measure of the fuzziness of the rank of that node, of the objective orderability of a graph's nodes, and of the quality of results returned by different ranking algorithms based on the random surfer model. We deploy our analytical tools on a 41M node snapshot of the .it Web domain and on a 0.7M node snapshot of the CiteSeer citation graph. Among other findings, we show that rank is indeed relatively stable in both graphs; that "classic" PageRank (d=0.85) marginally outperforms Weighted In-degree (d->0), mainly due to its ability to ferret out "niche" items; and that, for both the Web and CiteSeer, the ideal damping factor appears to be 0.8-0.9 to obtain those items of high importance to at least one (model of randomly surfing) user, but only 0.5-0.6 to obtain those items important to every (model of randomly surfing) user.
    Content
    This paper addresses the fundamental question of how the ranking induced by PageRank can be affected by variations of the damping factor. This introduction briefly reviews the PageRank algorithm (Section 1.1) and the crucial difference between score and rank (Section 1.2) before presenting an overview of our results and the organization of the rest of the paper (Section 1.3). Vgl. auch: doi:10.1016/j.jda.2009.11.001. http://www.sciencedirect.com/science/article/pii/S1570866709000926.
  4. Croft, W.B.; Metzler, D.; Strohman, T.: Search engines : information retrieval in practice (2010) 0.01
    0.008539819 = product of:
      0.034159277 = sum of:
        0.034159277 = weight(_text_:information in 2605) [ClassicSimilarity], result of:
          0.034159277 = score(doc=2605,freq=22.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.38596505 = fieldWeight in 2605, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2605)
      0.25 = coord(1/4)
    
    Abstract
    For introductory information retrieval courses at the undergraduate and graduate level in computer science, information science and computer engineering departments. Written by a leader in the field of information retrieval, Search Engines: Information Retrieval in Practice, is designed to give undergraduate students the understanding and tools they need to evaluate, compare and modify search engines. Coverage of the underlying IR and mathematical models reinforce key concepts. The book's numerous programming exercises make extensive use of Galago, a Java-based open source search engine. SUPPLEMENTS / Extensive lecture slides (in PDF and PPT format) / Solutions to selected end of chapter problems (Instructors only) / Test collections for exercises / Galago search engine
    LCSH
    Information retrieval
    Information Storage and Retrieval
    RSWK
    Suchmaschine / Information Retrieval
    Subject
    Suchmaschine / Information Retrieval
    Information retrieval
    Information Storage and Retrieval
  5. Ke, W.: Decentralized search and the clustering paradox in large scale information networks (2012) 0.01
    0.007724557 = product of:
      0.030898228 = sum of:
        0.030898228 = weight(_text_:information in 94) [ClassicSimilarity], result of:
          0.030898228 = score(doc=94,freq=18.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.34911853 = fieldWeight in 94, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=94)
      0.25 = coord(1/4)
    
    Abstract
    Amid the rapid growth of information today is the increasing challenge for people to navigate its magnitude. Dynamics and heterogeneity of large information spaces such as the Web raise important questions about information retrieval in these environments. Collection of all information in advance and centralization of IR operations are extremely difficult, if not impossible, because systems are dynamic and information is distributed. The chapter discusses some of the key issues facing classic information retrieval models and presents a decentralized, organic view of information systems pertaining to search in large scale networks. It focuses on the impact of network structure on search performance and discusses a phenomenon we refer to as the Clustering Paradox, in which the topology of interconnected systems imposes a scalability limit.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  6. Johnson, F.; Rowley, J.; Sbaffi, L.: Exploring information interactions in the context of Google (2016) 0.01
    0.007724557 = product of:
      0.030898228 = sum of:
        0.030898228 = weight(_text_:information in 2885) [ClassicSimilarity], result of:
          0.030898228 = score(doc=2885,freq=18.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.34911853 = fieldWeight in 2885, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2885)
      0.25 = coord(1/4)
    
    Abstract
    The study sets out to explore the factors that influence the evaluation of information and the judgments made in the process of finding useful information in web search contexts. Based on a diary study of 2 assigned tasks to search on Google and Google Scholar, factor analysis identified the core constructs of content, relevance, scope, and style, as well as informational and system "ease of use" as influencing the judgment that useful information had been found. Differences were found in the participants' evaluation of information across the search tasks on Google and on Google Scholar when identified by the factors related to both content and ease of use. The findings from this study suggest how searchers might critically evaluate information, and the study identifies a relation between the user's involvement in the information interaction and the influences of the perceived system ease of use and information design.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.824-840
  7. Lewandowski, D.: Query understanding (2011) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 344) [ClassicSimilarity], result of:
              0.054644987 = score(doc=344,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=344)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    18. 9.2018 18:22:18
  8. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.054644987 = score(doc=1149,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17.12.2013 11:02:22
  9. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.054644987 = score(doc=1484,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 9.2014 14:45:22
  10. Schaat, S.: Von der automatisierten Manipulation zur Manipulation der Automatisierung (2019) 0.01
    0.0068306234 = product of:
      0.027322493 = sum of:
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 4996) [ClassicSimilarity], result of:
              0.054644987 = score(doc=4996,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 4996, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4996)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    19. 2.2019 17:22:00
  11. Berri, J.; Benlamri, R.: Context-aware mobile search engine (2012) 0.01
    0.0063070743 = product of:
      0.025228297 = sum of:
        0.025228297 = weight(_text_:information in 104) [ClassicSimilarity], result of:
          0.025228297 = score(doc=104,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 104, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=104)
      0.25 = coord(1/4)
    
    Abstract
    Exploiting context information in a web search engine helps fine-tuning web services and applications to deliver custom-made information to end users. While context, including user and environment information, cannot be exploited efficiently in the wired Internet interaction type, it is becoming accessible with the mobile web where users have an intimate relationship with their handsets. In this type of interaction, context plays a significant role enhancing information search and therefore, allowing a search engine to detect relevant content in all digital forms and formats. This chapter proposes a context model and an architecture that promote integration of context information for individuals and social communities to add value to their interaction with the mobile web. The architecture relies on efficient knowledge management of multimedia resources for a wide range of applications and web services. The research is illustrated with a corporate case study showing how efficient context integration improves usability of a mobile search engine.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  12. Luo, M.M.; Nahl, D.: Let's Google : uncertainty and bilingual search (2019) 0.01
    0.0063070743 = product of:
      0.025228297 = sum of:
        0.025228297 = weight(_text_:information in 5363) [ClassicSimilarity], result of:
          0.025228297 = score(doc=5363,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 5363, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5363)
      0.25 = coord(1/4)
    
    Abstract
    This study applies Kuhlthau's Information Search Process stage (ISP) model to understand bilingual users' Internet search experience. We conduct a quasi-field experiment with 30 bilingual searchers and the results suggested that the ISP model was applicable in studying searchers' information retrieval behavior in search tasks. The ISP model was applicable in studying searchers' information retrieval behavior in simple tasks. However, searchers' emotional responses differed from those of the ISP model for a complex task. By testing searchers using different search strategies, the results suggested that search engines with multilanguage search functions provide an advantage for bilingual searchers in the Internet's multilingual environment. The findings showed that when searchers used a search engine as a tool for problem solving, they might experience different feelings in each ISP stage than in searching for information for a term paper using a library. The results echo other research findings that indicate that information seeking is a multifaceted phenomenon.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.9, S.1014-1025
  13. Werner, K.: das Confirmation/Disconfirmation-Paradigma der Kundenzufriedenheit im Kontext des Information Retrieval : Größere Zufriedenheit durch bessere Suchmaschinen? (2010) 0.01
    0.005946367 = product of:
      0.023785468 = sum of:
        0.023785468 = weight(_text_:information in 4016) [ClassicSimilarity], result of:
          0.023785468 = score(doc=4016,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2687516 = fieldWeight in 4016, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4016)
      0.25 = coord(1/4)
    
    Abstract
    In der vorgestellten Studie aus dem Bereich des interaktiven Information Retrieval wurde erstmals die Erwartungshaltung von Suchmaschinennutzern als mögliche Determinante der Benutzerzufriedenheit untersucht. Das experimentelle Untersuchungsdesign basiert auf einem betriebswirtschaftlichen Modell, das die Entstehung von Kundenzufriedenheit durch die Bestätigung bzw. Nicht-Bestätigung von Erwartungen erklärt. Ein zentrales Ergebnis dieser Studie ist, das bei der Messung von Benutzerzufriedenheit besonders auf den Messzeitpunkt zu achten ist. Des Weiteren konnte ein von der Systemgüte abhängiger Adaptionseffekt hinsichtlich der Relevanzbewertung der Benutzer nachgewiesen werden.
    Source
    Information - Wissenschaft und Praxis. 61(2010) H.6/7, S.385-396
  14. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.0058762697 = product of:
      0.023505079 = sum of:
        0.023505079 = weight(_text_:information in 357) [ClassicSimilarity], result of:
          0.023505079 = score(doc=357,freq=60.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.26558346 = fieldWeight in 357, product of:
              7.745967 = tf(freq=60.0), with freq of:
                60.0 = termFreq=60.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.25 = coord(1/4)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    LCSH
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    Information behavior
    Subject
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    Information behavior
  15. Hoeber, O.: Human-centred Web search (2012) 0.01
    0.005757545 = product of:
      0.02303018 = sum of:
        0.02303018 = weight(_text_:information in 102) [ClassicSimilarity], result of:
          0.02303018 = score(doc=102,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 102, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=102)
      0.25 = coord(1/4)
    
    Abstract
    People commonly experience difficulties when searching the Web, arising from an incomplete knowledge regarding their information needs, an inability to formulate accurate queries, and a low tolerance for considering the relevance of the search results. While simple and easy to use interfaces have made Web search universally accessible, they provide little assistance for people to overcome the difficulties they experience when their information needs are more complex than simple fact-verification. In human-centred Web search, the purpose of the search engine expands from a simple information retrieval engine to a decision support system. People are empowered to take an active role in the search process, with the search engine supporting them in developing a deeper understanding of their information needs, assisting them in crafting and refining their queries, and aiding them in evaluating and exploring the search results. In this chapter, recent research in this domain is outlined and discussed.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  16. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.01
    0.005757545 = product of:
      0.02303018 = sum of:
        0.02303018 = weight(_text_:information in 2799) [ClassicSimilarity], result of:
          0.02303018 = score(doc=2799,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2602176 = fieldWeight in 2799, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.25 = coord(1/4)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
    Source
    Information processing and management. 50(2014) no.2, S.416-425
  17. Waller, V.: Not just information : who searches for what on the search engine Google? (2011) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 4373) [ClassicSimilarity], result of:
          0.02059882 = score(doc=4373,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 4373, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4373)
      0.25 = coord(1/4)
    
    Abstract
    This paper reports on a transaction log analysis of the type and topic of search queries entered into the search engine Google (Australia). Two aspects, in particular, set this apart from previous studies: the sampling and analysis take account of the distribution of search queries, and lifestyle information of the searcher was matched with each search query. A surprising finding was that there was no observed statistically significant difference in search type or topics for different segments of the online population. It was found that queries about popular culture and Ecommerce accounted for almost half of all search engine queries and that half of the queries were entered with a particular Website in mind. The findings of this study also suggest that the Internet search engine is not only an interface to information or a shortcut to Websites, it is equally a site of leisure. This study has implications for the design and evaluation of search engines as well as our understanding of search engine use.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.4, S.761-775
  18. Lewandowski, D.; Spree, U.: ¬Die Forschungsgruppe Search Studies an der HAW Hamburg (2019) 0.01
    0.005149705 = product of:
      0.02059882 = sum of:
        0.02059882 = weight(_text_:information in 5021) [ClassicSimilarity], result of:
          0.02059882 = score(doc=5021,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23274569 = fieldWeight in 5021, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=5021)
      0.25 = coord(1/4)
    
    Source
    Information - Wissenschaft und Praxis. 70(2019) H.1, S.1-2
  19. White, R.W.: Interactions with search systems (2016) 0.00
    0.004797954 = product of:
      0.019191816 = sum of:
        0.019191816 = weight(_text_:information in 3612) [ClassicSimilarity], result of:
          0.019191816 = score(doc=3612,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21684799 = fieldWeight in 3612, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3612)
      0.25 = coord(1/4)
    
    Abstract
    Information seeking is a fundamental human activity. In the modern world, it is frequently conducted through interactions with search systems. The retrieval and comprehension of information returned by these systems is a key part of decision making and action in a broad range of settings. Advances in data availability coupled with new interaction paradigms, and mobile and cloud computing capabilities, have created a broad range of new opportunities for information access and use. In this comprehensive book for professionals, researchers, and students involved in search system design and evaluation, search expert Ryen White discusses how search systems can capitalize on new capabilities and how next-generation systems must support higher order search activities such as task completion, learning, and decision making. He outlines the implications of these changes for the evolution of search evaluation, as well as challenges that extend beyond search systems in areas such as privacy and societal benefit.
    RSWK
    Information Retrieval
    Subject
    Information Retrieval
  20. Roux, M.: Metadata for search engines : what can be learned from e-Sciences? (2012) 0.00
    0.0044597755 = product of:
      0.017839102 = sum of:
        0.017839102 = weight(_text_:information in 96) [ClassicSimilarity], result of:
          0.017839102 = score(doc=96,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 96, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
      0.25 = coord(1/4)
    
    Abstract
    E-sciences are data-intensive sciences that make a large use of the Web to share, collect, and process data. In this context, primary scientific data is becoming a new challenging issue as data must be extensively described (1) to account for empiric conditions and results that allow interpretation and/or analyses and (2) to be understandable by computers used for data storage and information retrieval. With this respect, metadata is a focal point whatever it is considered from the point of view of the user to visualize and exploit data as well as this of the search tools to find and retrieve information. Numerous disciplines are concerned with the issues of describing complex observations and addressing pertinent knowledge. In this paper, similarities and differences in data description and exploration strategies among disciplines in e-sciences are examined.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a

Languages

  • e 65
  • d 28

Types

  • a 82
  • el 14
  • m 6
  • s 3
  • r 2
  • x 1
  • More… Less…