Search (70 results, page 1 of 4)

  • × theme_ss:"Visualisierung"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.02
    0.021209672 = product of:
      0.042419344 = sum of:
        0.042419344 = sum of:
          0.011219106 = weight(_text_:a in 5272) [ClassicSimilarity], result of:
            0.011219106 = score(doc=5272,freq=22.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.21126054 = fieldWeight in 5272, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
          0.03120024 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
            0.03120024 = score(doc=5272,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 5272, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
      0.5 = coord(1/2)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Type
    a
  2. Spero, S.: LCSH is to thesaurus as doorbell is to mammal : visualizing structural problems in the Library of Congress Subject Headings (2008) 0.02
    0.015186245 = product of:
      0.03037249 = sum of:
        0.03037249 = sum of:
          0.0054123 = weight(_text_:a in 2659) [ClassicSimilarity], result of:
            0.0054123 = score(doc=2659,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 2659, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=2659)
          0.02496019 = weight(_text_:22 in 2659) [ClassicSimilarity], result of:
            0.02496019 = score(doc=2659,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 2659, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2659)
      0.5 = coord(1/2)
    
    Abstract
    The Library of Congress Subject Headings (LCSH) has been developed over the course of more than a century, predating the semantic web by some time. Until the 1986, the only concept-toconcept relationship available was an undifferentiated "See Also" reference, which was used for both associative (RT) and hierarchical (BT/NT) connections. In that year, in preparation for the first release of the headings in machine readable MARC Authorities form, an attempt was made to automatically convert these "See Also" links into the standardized thesaural relations. Unfortunately, the rule used to determine the type of reference to generate relied on the presence of symmetric links to detect associatively related terms; "See Also" references that were only present in one of the related terms were assumed to be hierarchical. This left the process vulnerable to inconsistent use of references in the pre-conversion data, with a marked bias towards promoting relationships to hierarchical status. The Library of Congress was aware that the results of the conversion contained many inconsistencies, and intended to validate and correct the results over the course of time. Unfortunately, twenty years later, less than 40% of the converted records have been evaluated. The converted records, being the earliest encountered during the Library's cataloging activities, represent the most basic concepts within LCSH; errors in the syndetic structure for these records affect far more subordinate concepts than those nearer the periphery. Worse, a policy of patterning new headings after pre-existing ones leads to structural errors arising from the conversion process being replicated in these newer headings, perpetuating and exacerbating the errors. As the LCSH prepares for its second great conversion, from MARC to SKOS, it is critical to address these structural problems. As part of the work on converting the headings into SKOS, I have experimented with different visualizations of the tangled web of broader terms embedded in LCSH. This poster illustrates several of these renderings, shows how they can help users to judge which relationships might not be correct, and shows just exactly how Doorbells and Mammals are related.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  3. Zhang, J.: TOFIR: A tool of facilitating information retrieval : introduce a visual retrieval model (2001) 0.00
    0.004101291 = product of:
      0.008202582 = sum of:
        0.008202582 = product of:
          0.016405163 = sum of:
            0.016405163 = weight(_text_:a in 7711) [ClassicSimilarity], result of:
              0.016405163 = score(doc=7711,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.3089162 = fieldWeight in 7711, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7711)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Schallier, W.: What a subject search interface can do (2004) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 3475) [ClassicSimilarity], result of:
              0.01339476 = score(doc=3475,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 3475, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3475)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Zhang, J.; Nguyen, T.: WebStar: a visualization model for hyperlink structures (2005) 0.00
    0.0030444188 = product of:
      0.0060888375 = sum of:
        0.0060888375 = product of:
          0.012177675 = sum of:
            0.012177675 = weight(_text_:a in 1056) [ClassicSimilarity], result of:
              0.012177675 = score(doc=1056,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22931081 = fieldWeight in 1056, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1056)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The authors introduce an information visualization model, WebStar, for hyperlink-based information systems. Hyperlinks within a hyperlink-based document can be visualized in a two-dimensional visual space. All links are projected within a display sphere in the visual space. The relationship between a specified central document and its hyperlinked documents is visually presented in the visual space. In addition, users are able to define a group of subjects and to observe relevance between each subject and all hyperlinked documents via movement of that subject around the display sphere center. WebStar allows users to dynamically change an interest center during navigation. A retrieval mechanism is developed to control retrieved results in the visual space. Impact of movement of a subject on the visual document distribution is analyzed. An ambiguity problem caused by projection is discussed. Potential applications of this visualization model in information retrieval are included. Future research directions on the topic are addressed.
    Type
    a
  6. Tang, M.-C.: Browsing and searching in a faceted information space : a naturalistic study of PubMed users' interaction with a display tool (2007) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 617) [ClassicSimilarity], result of:
              0.011717974 = score(doc=617,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 617, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=617)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The study adopts a naturalistic approach to investigate users' interaction with a browsable MeSH (medical subject headings) display designed to facilitate query construction for the PubMed bibliographic database. The purpose of the study is twofold: first, to test the usefulness of a browsable interface utilizing the principle of faceted classification; and second, to investigate users' preferred query submission methods in different problematic situations. An interface that incorporated multiple query submission methods - the conventional single-line query box as well as methods associated the faceted classification display was constructed. Participants' interactions with the interface were monitored remotely over a period of 10 weeks; information about their problematic situations and information retrieval behaviors were also collected during this time. The traditional controlled experiment was not adequate in answering the author's research questions; hence, the author provides his rationale for a naturalistic approach. The study's findings show that there is indeed a selective compatibility between query submission methods provided by the MeSH display and users' problematic situations. The query submission methods associated with the display were found to be the preferred search tools when users' information needs were vague and the search topics unfamiliar. The findings support the theoretical proposition that users engaging in an information retrieval process with a variety of problematic situations need different approaches. The author argues that rather than treat the information retrieval system as a general purpose tool, more attention should be given to the interaction between the functionality of the tool and the characteristics of users' problematic situations.
    Type
    a
  7. Eckert, K.; Pfeffer, M.; Stuckenschmidt, H.: Assessing thesaurus-based annotations for semantic search applications (2008) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 1528) [ClassicSimilarity], result of:
              0.011600202 = score(doc=1528,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 1528, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1528)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Statistical methods for automated document indexing are becoming an alternative to the manual assignment of keywords. We argue that the quality of the thesaurus used as a basis for indexing in regard to its ability to adequately cover the contents to be indexed and as a basis for the specific indexing method used is of crucial importance in automatic indexing. We present an interactive tool for thesaurus evaluation that is based on a combination of statistical measures and appropriate visualisation techniques that supports the detection of potential problems in a thesaurus. We describe the methods used and show that the tool supports the detection and correction of errors, leading to a better indexing result.
    Type
    a
  8. Given, L.M.; Ruecker, S.; Simpson, H.; Sadler, E.; Ruskin, A.: Inclusive interface design for seniors : Image-browsing for a health information context (2007) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 579) [ClassicSimilarity], result of:
              0.011600202 = score(doc=579,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 579, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=579)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explores an image-based retrieval interface for drug information, focusing on usability for a specific population - seniors. Qualitative, task-based interviews examined participants' health information behaviors and documented search strategies using an existing database (www.drugs.com) and a new prototype that uses similarity-based clustering of pill images for retrieval. Twelve participants (aged 65 and older), reflecting a diversity of backgrounds and experience with Web-based resources, located pill information using the interfaces and discussed navigational and other search preferences. Findings point to design features (e.g., image enlargement) that meet seniors' needs in the context of other health-related information-seeking strategies (e.g., contacting pharmacists).
    Type
    a
  9. Enser, P.: ¬The evolution of visual information retrieval (2009) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3659) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3659,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3659, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper seeks to provide a brief overview of those developments which have taken the theory and practice of image and video retrieval into the digital age. Drawing on a voluminous literature, the context in which visual information retrieval takes place is followed by a consideration of the conceptual and practical challenges posed by the representation and recovery of visual material on the basis of its semantic content. An historical account of research endeavours in content-based retrieval, directed towards the automation of these operations in digital image scenarios, provides the main thrust of the paper. Finally, a look forwards locates visual information retrieval research within the wider context of content-based multimedia retrieval.
    Source
    Information science in transition, Ed.: A. Gilchrist
    Type
    a
  10. Aris, A.; Shneiderman, B.; Qazvinian, V.; Radev, D.: Visual overviews for discovering key papers and influences across research fronts (2009) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3156) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3156,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3156, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3156)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts, is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.
    Type
    a
  11. Large, A.; Beheshti, J.; Tabatabaei, N.; Nesset, V.: Developing a visual taxonomy : children's views on aesthetics (2009) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 3088) [ClassicSimilarity], result of:
              0.010589487 = score(doc=3088,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 3088, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3088)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article explores the aesthetic design criteria that should be incorporated into the information visualization of a taxonomy intended for use by children. Seven elementary-school students were each asked to represent their ideas in drawings for visualizing a taxonomy. Their drawings were analyzed according to six criteria - balance, equilibrium, symmetry, unity, rhythm, and economy - identified as aesthetic measures in previous research. The drawings revealed the presence of all six measures, and three - unity, equilibrium, and rhythm - were found to play an especially important role. It is therefore concluded that an aesthetic design for an information visualization for young users should incorporate all six measures.
    Type
    a
  12. Maaten, L. van den: Learning a parametric embedding by preserving local structure (2009) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 3883) [ClassicSimilarity], result of:
              0.010589487 = score(doc=3883,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 3883, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper presents a new unsupervised dimensionality reduction technique, called parametric t-SNE, that learns a parametric mapping between the high-dimensional data space and the low-dimensional latent space. Parametric t-SNE learns the parametric mapping in such a way that the local structure of the data is preserved as well as possible in the latent space. We evaluate the performance of parametric t-SNE in experiments on three datasets, in which we compare it to the performance of two other unsupervised parametric dimensionality reduction techniques. The results of experiments illustrate the strong performance of parametric t-SNE, in particular, in learning settings in which the dimensionality of the latent space is relatively low.
    Type
    a
  13. Zhu, B.; Chen, H.: Information visualization (2004) 0.00
    0.0025803389 = product of:
      0.0051606777 = sum of:
        0.0051606777 = product of:
          0.010321355 = sum of:
            0.010321355 = weight(_text_:a in 4276) [ClassicSimilarity], result of:
              0.010321355 = score(doc=4276,freq=38.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19435552 = fieldWeight in 4276, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Type
    a
  14. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1078) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1078,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1078, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1078)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
    Type
    a
  15. Collins, L.M.; Hussell, J.A.T.; Hettinga, R.K.; Powell, J.E.; Mane, K.K.; Martinez, M.L.B.: Information visualization and large-scale repositories (2007) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2596) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2596,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2596, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2596)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To describe how information visualization can be used in the design of interface tools for large-scale repositories. Design/methodology/approach - One challenge for designers in the context of large-scale repositories is to create interface tools that help users find specific information of interest. In order to be most effective, these tools need to leverage the cognitive characteristics of the target users. At the Los Alamos National Laboratory, the authors' target users are scientists and engineers who can be characterized as higher-order, analytical thinkers. In this paper, the authors describe a visualization tool they have created for making the authors' large-scale digital object repositories more usable for them: SearchGraph, which facilitates data set analysis by displaying search results in the form of a two- or three-dimensional interactive scatter plot. Findings - Using SearchGraph, users can view a condensed, abstract visualization of search results. They can view the same dataset from multiple perspectives by manipulating several display, sort, and filter options. Doing so allows them to see different patterns in the dataset. For example, they can apply a logarithmic transformation in order to create more scatter in a dense cluster of data points or they can apply filters in order to focus on a specific subset of data points. Originality/value - SearchGraph is a creative solution to the problem of how to design interface tools for large-scale repositories. It is particularly appropriate for the authors' target users, who are scientists and engineers. It extends the work of the first two authors on ActiveGraph, a read-write digital library visualization tool.
    Type
    a
  16. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2700) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2700,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2700, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2700)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although information retrieval techniques used by Web search engines have improved substantially over the years, the results of Web searches have continued to be represented in simple list-based formats. Although the list-based representation makes it easy to evaluate a single document for relevance, it does not support the users in the broader tasks of manipulating or exploring the search results as they attempt to find a collection of relevant documents. HotMap is a meta-search system that provides a compact visual representation of Web search results at two levels of detail, and it supports interactive exploration via nested sorting of Web search results based on query term frequencies. An evaluation of the search results for a set of vague queries has shown that the re-sorted search results can provide a higher portion of relevant documents among the top search results. User studies show an increase in speed and effectiveness and a reduction in missed documents when comparing HotMap to the list-based representation used by Google. Subjective measures were positive, and users showed a preference for the HotMap interface. These results provide evidence for the utility of next-generation Web search results interfaces that promote interactive search results exploration.
    Type
    a
  17. Koshman, S.: Comparing usability between a visualization and text-based system for information retrieval (2004) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4424) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4424,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4424, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4424)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This investigation tested the designer assumption that VIBE is a tool for an expert user and asked: what are the effects of user expertise on usability when VIBE's non-traditional interface is compared with a more traditional text-based interface? Three user groups - novices, online searching experts, and VIBE system experts - totaling 31 participants, were asked to use and compare VIBE to a more traditional text-based system, askSam. No significant differences were found; however, significant performance differences were found for some tasks on the two systems. Participants understood the basic principles underlying VIBE although they generally favored the askSam system. The findings suggest that VIBE is a learnable system and its components have pragmatic application to the development of visualized information retrieval systems. Further research is recommended to maximize the retrieval potential of IR visualization systems.
    Type
    a
  18. Maaten, L. van den; Hinton, G.: Visualizing data using t-SNE (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3888) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3888,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3888, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3888)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.
    Type
    a
  19. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 232) [ClassicSimilarity], result of:
              0.009471525 = score(doc=232,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 232, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  20. Hall, P.: Disorderly reasoning in information design (2009) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3099) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3099,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3099, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3099)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The importance of information visualization as a means of transforming data into visual, understandable form is now embraced across university campuses and research institutes world-wide. Yet, the role of designers in this field of activity is often overlooked by the dominant scientific and technological interests in data visualization, and a corporate culture reliant on off-the-shelf visualization tools. This article is an attempt to describe the value of design thinking in information visualization with reference to Horst Rittel's ([1988]) definition of disorderly reasoning, and to frame design as a critical act of translating between scientific, technical, and aesthetic interests.
    Type
    a

Authors

Languages

  • e 55
  • d 15

Types