Search (9 results, page 1 of 1)

  • × theme_ss:"Visualisierung"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Spero, S.: LCSH is to thesaurus as doorbell is to mammal : visualizing structural problems in the Library of Congress Subject Headings (2008) 0.02
    0.022553235 = product of:
      0.04510647 = sum of:
        0.032553654 = weight(_text_:social in 2659) [ClassicSimilarity], result of:
          0.032553654 = score(doc=2659,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 2659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
        0.012552816 = product of:
          0.025105633 = sum of:
            0.025105633 = weight(_text_:22 in 2659) [ClassicSimilarity], result of:
              0.025105633 = score(doc=2659,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.15476047 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Tscherteu, G.; Langreiter, C.: Explorative Netzwerkanalyse im Living Web (2009) 0.02
    0.016276827 = product of:
      0.06510731 = sum of:
        0.06510731 = weight(_text_:social in 4870) [ClassicSimilarity], result of:
          0.06510731 = score(doc=4870,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3524555 = fieldWeight in 4870, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0625 = fieldNorm(doc=4870)
      0.25 = coord(1/4)
    
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
  3. Moya-Anegón, F. de; Vargas-Quesada, B.; Chinchilla-Rodríguez, Z.; Corera-Álvarez, E.; Munoz-Fernández, F.J.; Herrero-Solana, V.; SCImago Group: Visualizing the marrow of science (2007) 0.01
    0.0142422225 = product of:
      0.05696889 = sum of:
        0.05696889 = weight(_text_:social in 1313) [ClassicSimilarity], result of:
          0.05696889 = score(doc=1313,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.30839854 = fieldWeight in 1313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1313)
      0.25 = coord(1/4)
    
    Abstract
    This study proposes a new methodology that allows for the generation of scientograms of major scientific domains, constructed on the basis of cocitation of Institute of Scientific Information categories, and pruned using PathfinderNetwork, with a layout determined by algorithms of the spring-embedder type (Kamada-Kawai), then corroborated structurally by factor analysis. We present the complete scientogram of the world for the Year 2002. It integrates the natural sciences, the social sciences, and arts and humanities. Its basic structure and the essential relationships therein are revealed, allowing us to simultaneously analyze the macrostructure, microstructure, and marrow of worldwide scientific output.
  4. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 82) [ClassicSimilarity], result of:
          0.040692065 = score(doc=82,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 82, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=82)
      0.25 = coord(1/4)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
  5. Quirin, A.; Cordón, O.; Santamaría, J.; Vargas-Quesada, B.; Moya-Anegón, F.: ¬A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time (2008) 0.01
    0.008138414 = product of:
      0.032553654 = sum of:
        0.032553654 = weight(_text_:social in 2112) [ClassicSimilarity], result of:
          0.032553654 = score(doc=2112,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 2112, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=2112)
      0.25 = coord(1/4)
    
    Abstract
    In the last few years, there is an increasing interest to generate visual representations of very large scientific domains. A methodology based on the combined use of ISI-JCR category cocitation and social networks analysis through the use of the Pathfinder algorithm has demonstrated its ability to achieve high quality, schematic visualizations for these kinds of domains. Now, the next step would be to generate these scientograms in an on-line fashion. To do so, there is a need to significantly decrease the run time of the latter pruning technique when working with category cocitation matrices of a large dimension like the ones handled in these large domains (Pathfinder has a time complexity order of O(n4), with n being the number of categories in the cocitation matrix, i.e., the number of nodes in the network). Although a previous improvement called Binary Pathfinder has already been proposed to speed up the original algorithm, its significant time complexity reduction is not enough for that aim. In this paper, we make use of a different shortest path computation from classical approaches in computer science graph theory to propose a new variant of the Pathfinder algorithm which allows us to reduce its time complexity in one order of magnitude, O(n3), and thus to significantly decrease the run time of the implementation when applied to large scientific domains considering the parameter q = n - 1. Besides, the new algorithm has a much simpler structure than the Binary Pathfinder as well as it saves a significant amount of memory with respect to the original Pathfinder by reducing the space complexity to the need of just storing two matrices. An experimental comparison will be developed using large networks from real-world domains to show the good performance of the new proposal.
  6. Yi, K.; Chan, L.M.: ¬A visualization software tool for Library of Congress Subject Headings (2008) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 2503) [ClassicSimilarity], result of:
              0.06273703 = score(doc=2503,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 2503, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2503)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    The aim of this study is to develop a software tool, VisuaLCSH, for effective searching, browsing, and maintenance of LCSH. This tool enables visualizing subject headings and hierarchical structures implied and embedded in LCSH. A conceptual framework for converting the hierarchical structure of headings in LCSH to an explicit tree structure is proposed, described, and implemented. The highlights of VisuaLCSH are summarized below: 1) revealing multiple aspects of a heading; 2) normalizing the hierarchical relationships in LCSH; 3) showing multi-level hierarchies in LCSH sub-trees; 4) improving the navigational function of LCSH in retrieval; and 5) enabling the implementation of generic search, i.e., the 'exploding' feature, in searching LCSH.
  7. Hajdu Barat, A.: Human perception and knowledge organization : visual imagery (2007) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 2595) [ClassicSimilarity], result of:
              0.052280862 = score(doc=2595,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 2595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2595)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to explore the theory and practice of knowledge organization and its necessary connection to human perception, and shows a solution of the potential ones. Design/methodology/approach - The author attempts to survey the problem of concept-building and extension, as well as the determination of semantics in different aspects. The purpose is to find criteria for the choice of the solution that best incorporates users into the design cycles of knowledge organization systems. Findings - It is widely agreed that cognition provides the basis for concept-building; however, at the next stage of processing there is a debate. Fundamentally, what is the connection between perception and the superior cognitive processes? The perceptual method does not separate these two but rather considers them united, with perception permeating cognition. By contrast, the linguistic method considers perception as an information-receiving system. Separate from, and following, perception, the cognitive subsystems then perform information and data processing, leading to both knowledge organization and representation. We assume by that model that top-level concepts emerge from knowledge organization and representation. This paper points obvious connection of visual imagery and the internet; perceptual access of knowledge organization and information retrieval. There are some practical and characteristic solutions for the visualization of information without demand of completeness. Research limitations/implications - Librarians need to identify those semantic characteristics which stimulate a similar conceptual image both in the mind of the librarian and in the mind of the user. Originality/value - For a fresh perspective, an understanding of perception is required as well.
  8. Zhu, B.; Chen, H.: Information visualization (2004) 0.00
    0.0045745755 = product of:
      0.018298302 = sum of:
        0.018298302 = product of:
          0.036596604 = sum of:
            0.036596604 = weight(_text_:aspects in 4276) [ClassicSimilarity], result of:
              0.036596604 = score(doc=4276,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.17478286 = fieldWeight in 4276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
  9. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.031382043 = score(doc=5272,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 16:11:05