Search (68 results, page 2 of 4)

  • × theme_ss:"Visualisierung"
  • × year_i:[2000 TO 2010}
  1. Samoylenko, I.; Chao, T.-C.; Liu, W.-C.; Chen, C.-M.: Visualizing the scientific world and its evolution (2006) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 5911) [ClassicSimilarity], result of:
          0.022459546 = score(doc=5911,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 5911, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5911)
      0.2 = coord(1/5)
    
    Abstract
    We propose an approach to visualizing the scientific world and its evolution by constructing minimum spanning trees (MSTs) and a two-dimensional map of scientific journals using the database of the Science Citation Index (SCI) during 1994-2001. The structures of constructed MSTs are consistent with the sorting of SCI categories. The map of science is constructed based on our MST results. Such a map shows the relation among various knowledge clusters and their citation properties. The temporal evolution of the scientific world can also be delineated in the map. In particular, this map clearly shows a linear structure of the scientific world, which contains three major domains including physical sciences, life sciences, and medical sciences. The interaction of various knowledge fields can be clearly seen from this scientific world map. This approach can be applied to various levels of knowledge domains.
    Object
    Map of Science
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.11, S.1461-1469
  2. Aris, A.; Shneiderman, B.; Qazvinian, V.; Radev, D.: Visual overviews for discovering key papers and influences across research fronts (2009) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 3156) [ClassicSimilarity], result of:
          0.022459546 = score(doc=3156,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 3156, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3156)
      0.2 = coord(1/5)
    
    Abstract
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts, is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2219-2228
  3. Gelernter, J.: Visual classification with information visualization (Infoviz) for digital library collections (2007) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 423) [ClassicSimilarity], result of:
          0.022345824 = score(doc=423,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 423, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=423)
      0.2 = coord(1/5)
    
    Abstract
    The purpose of information visualization (infoviz) is to show information graphically. That purpose is often obscured by infoviz designs that are not well understood in practice. This paper offers an overview of infoviz culled from the literature on applications of information visualization for the digital library: how the clustering works that creates the topics and those topics are represented graphically. It presents a taxonomy of infoviz designs in one, two and three dimensions. It is suggested that user evaluations of infoviz designs might be used to enrich infoviz theory and, whether through application of the theory or through application of user remarks, developers might improve infoviz interface comprehensibility. Design recommendations are made in an effort to improve weaknesses and capitalize on strengths of present interfaces in representing knowledge visually.
  4. Hall, P.: Disorderly reasoning in information design (2009) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 3099) [ClassicSimilarity], result of:
          0.022345824 = score(doc=3099,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 3099, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3099)
      0.2 = coord(1/5)
    
    Abstract
    The importance of information visualization as a means of transforming data into visual, understandable form is now embraced across university campuses and research institutes world-wide. Yet, the role of designers in this field of activity is often overlooked by the dominant scientific and technological interests in data visualization, and a corporate culture reliant on off-the-shelf visualization tools. This article is an attempt to describe the value of design thinking in information visualization with reference to Horst Rittel's ([1988]) definition of disorderly reasoning, and to frame design as a critical act of translating between scientific, technical, and aesthetic interests.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1877-1882
  5. Eckert, K.: Thesaurus analysis and visualization in semantic search applications (2007) 0.00
    0.004371183 = product of:
      0.021855915 = sum of:
        0.021855915 = weight(_text_:of in 3222) [ClassicSimilarity], result of:
          0.021855915 = score(doc=3222,freq=30.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33457235 = fieldWeight in 3222, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3222)
      0.2 = coord(1/5)
    
    Abstract
    The use of thesaurus-based indexing is a common approach for increasing the performance of information retrieval. In this thesis, we examine the suitability of a thesaurus for a given set of information and evaluate improvements of existing thesauri to get better search results. On this area, we focus on two aspects: 1. We demonstrate an analysis of the indexing results achieved by an automatic document indexer and the involved thesaurus. 2. We propose a method for thesaurus evaluation which is based on a combination of statistical measures and appropriate visualization techniques that support the detection of potential problems in a thesaurus. In this chapter, we give an overview of the context of our work. Next, we briefly outline the basics of thesaurus-based information retrieval and describe the Collexis Engine that was used for our experiments. In Chapter 3, we describe two experiments in automatically indexing documents in the areas of medicine and economics with corresponding thesauri and compare the results to available manual annotations. Chapter 4 describes methods for assessing thesauri and visualizing the result in terms of a treemap. We depict examples of interesting observations supported by the method and show that we actually find critical problems. We conclude with a discussion of open questions and future research in Chapter 5.
  6. Visual thesaurus (2005) 0.00
    0.0042350125 = product of:
      0.021175062 = sum of:
        0.021175062 = weight(_text_:of in 1292) [ClassicSimilarity], result of:
          0.021175062 = score(doc=1292,freq=44.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3241498 = fieldWeight in 1292, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
      0.2 = coord(1/5)
    
    Abstract
    A visual thesaurus system and method for displaying a selected term in association with its one or more meanings, other words to which it is related, and further relationship information. The results of a search are presented in a directed graph that provides more information than an ordered list. When a user selects one of the results, the display reorganizes around the user's search allowing for further searches, without the interruption of going to additional pages.
    Content
    Traditional print reference guides often have two methods of finding information: an order (alphabetical for dictionaries and encyclopedias, by subject hierarchy in the case of thesauri) and indices (ordered lists, with a more complete listing of words and concepts, which refers back to original content from the main body of the book). A user of such traditional print reference guides who is looking for information will either browse through the ordered information in the main body of the reference book, or scan through the indices to find what is necessary. The advent of the computer allows for much more rapid electronic searches of the same information, and for multiple layers of indices. Users can either search through information by entering a keyword, or users can browse through the information through an outline index, which represents the information contained in the main body of the data. There are two traditional user interfaces for such applications. First, the user may type text into a search field and in response, a list of results is returned to the user. The user then selects a returned entry and may page through the resulting information. Alternatively, the user may choose from a list of words from an index. For example, software thesaurus applications, in which a user attempts to find synonyms, antonyms, homonyms, etc. for a selected word, are usually implemented using the conventional search and presentation techniques discussed above. The presentation of results only allows for a one-dimensional order of data at any one time. In addition, only a limited number of results can be shown at once, and selecting a result inevitably leads to another page-if the result is not satisfactory, the users must search again. Finally, it is difficult to present information about the manner in which the search results are related, or to present quantitative information about the results without causing confusion. Therefore, there exists a need for a multidimensional graphical display of information, in particular with respect to information relating to the meaning of words and their relationships to other words. There further exists a need to present large amounts of information in a way that can be manipulated by the user, without the user losing his place. And there exists a need for more fluid, intuitive and powerful thesaurus functionality that invites the exploration of language.
  7. Eckert, K.; Pfeffer, M.; Stuckenschmidt, H.: Assessing thesaurus-based annotations for semantic search applications (2008) 0.00
    0.0041805212 = product of:
      0.020902606 = sum of:
        0.020902606 = weight(_text_:of in 1528) [ClassicSimilarity], result of:
          0.020902606 = score(doc=1528,freq=14.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31997898 = fieldWeight in 1528, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1528)
      0.2 = coord(1/5)
    
    Abstract
    Statistical methods for automated document indexing are becoming an alternative to the manual assignment of keywords. We argue that the quality of the thesaurus used as a basis for indexing in regard to its ability to adequately cover the contents to be indexed and as a basis for the specific indexing method used is of crucial importance in automatic indexing. We present an interactive tool for thesaurus evaluation that is based on a combination of statistical measures and appropriate visualisation techniques that supports the detection of potential problems in a thesaurus. We describe the methods used and show that the tool supports the detection and correction of errors, leading to a better indexing result.
    Source
    International Journal of Metadata, Semantics and Ontologies. 3(2008) no.1, S.53-67
  8. Lin, X.; Bui, Y.: Information visualization (2009) 0.00
    0.0041805212 = product of:
      0.020902606 = sum of:
        0.020902606 = weight(_text_:of in 3818) [ClassicSimilarity], result of:
          0.020902606 = score(doc=3818,freq=14.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31997898 = fieldWeight in 3818, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3818)
      0.2 = coord(1/5)
    
    Abstract
    The goal of information visualization (IV) is to amplify human cognition through computer-generated, interactive, and visual data representation. By combining the computational power with human perceptional and associative capabilities, IV will make it easier for users to navigate through large amounts of information, discover patterns or hidden structures of the information, and understand semantics of the information space. This entry reviews the history and background of IV and discusses its basic principles with pointers to relevant resources. The entry also summarizes major IV techniques and toolkits and shows various examples of IV applications.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  9. Maaten, L. van den: Learning a parametric embedding by preserving local structure (2009) 0.00
    0.0041805212 = product of:
      0.020902606 = sum of:
        0.020902606 = weight(_text_:of in 3883) [ClassicSimilarity], result of:
          0.020902606 = score(doc=3883,freq=14.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31997898 = fieldWeight in 3883, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3883)
      0.2 = coord(1/5)
    
    Abstract
    The paper presents a new unsupervised dimensionality reduction technique, called parametric t-SNE, that learns a parametric mapping between the high-dimensional data space and the low-dimensional latent space. Parametric t-SNE learns the parametric mapping in such a way that the local structure of the data is preserved as well as possible in the latent space. We evaluate the performance of parametric t-SNE in experiments on three datasets, in which we compare it to the performance of two other unsupervised parametric dimensionality reduction techniques. The results of experiments illustrate the strong performance of parametric t-SNE, in particular, in learning settings in which the dimensionality of the latent space is relatively low.
    Source
    Proceedings of the Twelfth International Conference on Artificial Intelligence & Statistics (AI-STATS), JMLR W&CP 5, 2009. S.384-391
  10. Munzner, T.: Interactive visualization of large graphs and networks (2000) 0.00
    0.004137642 = product of:
      0.020688212 = sum of:
        0.020688212 = weight(_text_:of in 4746) [ClassicSimilarity], result of:
          0.020688212 = score(doc=4746,freq=42.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31669703 = fieldWeight in 4746, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4746)
      0.2 = coord(1/5)
    
    Abstract
    Many real-world domains can be represented as large node-link graphs: backbone Internet routers connect with 70,000 other hosts, mid-sized Web servers handle between 20,000 and 200,000 hyperlinked documents, and dictionaries contain millions of words defined in terms of each other. Computational manipulation of such large graphs is common, but previous tools for graph visualization have been limited to datasets of a few thousand nodes. Visual depictions of graphs and networks are external representations that exploit human visual processing to reduce the cognitive load of many tasks that require understanding of global or local structure. We assert that the two key advantages of computer-based systems for information visualization over traditional paper-based visual exposition are interactivity and scalability. We also argue that designing visualization software by taking the characteristics of a target user's task domain into account leads to systems that are more effective and scale to larger datasets than previous work. This thesis contains a detailed analysis of three specialized systems for the interactive exploration of large graphs, relating the intended tasks to the spatial layout and visual encoding choices. We present two novel algorithms for specialized layout and drawing that use quite different visual metaphors. The H3 system for visualizing the hyperlink structures of web sites scales to datasets of over 100,000 nodes by using a carefully chosen spanning tree as the layout backbone, 3D hyperbolic geometry for a Focus+Context view, and provides a fluid interactive experience through guaranteed frame rate drawing. The Constellation system features a highly specialized 2D layout intended to spatially encode domain-specific information for computational linguists checking the plausibility of a large semantic network created from dictionaries. The Planet Multicast system for displaying the tunnel topology of the Internet's multicast backbone provides a literal 3D geographic layout of arcs on a globe to help MBone maintainers find misconfigured long-distance tunnels. Each of these three systems provides a very different view of the graph structure, and we evaluate their efficacy for the intended task. We generalize these findings in our analysis of the importance of interactivity and specialization for graph visualization systems that are effective and scalable.
  11. Slavic, A.: Interface to classification : some objectives and options (2006) 0.00
    0.0040630843 = product of:
      0.02031542 = sum of:
        0.02031542 = weight(_text_:of in 2131) [ClassicSimilarity], result of:
          0.02031542 = score(doc=2131,freq=18.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3109903 = fieldWeight in 2131, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2131)
      0.2 = coord(1/5)
    
    Abstract
    This is a preprint to be published in the Extensions & Corrections to the UDC. The paper explains the basic functions of browsing and searching that need to be supported in relation to analytico-synthetic classifications such as Universal Decimal Classification (UDC), irrespective of any specific, real-life implementation. UDC is an example of a semi-faceted system that can be used, for instance, for both post-coordinate searching and hierarchical/facet browsing. The advantages of using a classification for IR, however, depend on the strength of the GUI, which should provide a user-friendly interface to classification browsing and searching. The power of this interface is in supporting visualisation that will 'convert' what is potentially a user-unfriendly indexing language based on symbols, to a subject presentation that is easy to understand, search and navigate. A summary of the basic functions of searching and browsing a classification that may be provided on a user-friendly interface is given and examples of classification browsing interfaces are provided.
  12. Yi, K.; Chan, L.M.: ¬A visualization software tool for Library of Congress Subject Headings (2008) 0.00
    0.0040630843 = product of:
      0.02031542 = sum of:
        0.02031542 = weight(_text_:of in 2503) [ClassicSimilarity], result of:
          0.02031542 = score(doc=2503,freq=18.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3109903 = fieldWeight in 2503, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2503)
      0.2 = coord(1/5)
    
    Content
    The aim of this study is to develop a software tool, VisuaLCSH, for effective searching, browsing, and maintenance of LCSH. This tool enables visualizing subject headings and hierarchical structures implied and embedded in LCSH. A conceptual framework for converting the hierarchical structure of headings in LCSH to an explicit tree structure is proposed, described, and implemented. The highlights of VisuaLCSH are summarized below: 1) revealing multiple aspects of a heading; 2) normalizing the hierarchical relationships in LCSH; 3) showing multi-level hierarchies in LCSH sub-trees; 4) improving the navigational function of LCSH in retrieval; and 5) enabling the implementation of generic search, i.e., the 'exploding' feature, in searching LCSH.
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  13. Pfeffer, M.; Eckert, K.; Stuckenschmidt, H.: Visual analysis of classification systems and library collections (2008) 0.00
    0.004037926 = product of:
      0.02018963 = sum of:
        0.02018963 = weight(_text_:of in 317) [ClassicSimilarity], result of:
          0.02018963 = score(doc=317,freq=10.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3090647 = fieldWeight in 317, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=317)
      0.2 = coord(1/5)
    
    Abstract
    In this demonstration we present a visual analysis approach that addresses both developers and users of hierarchical classification systems. The approach supports an intuitive understanding of the structure and current use in relation to a specific collection. We will also demonstrate its application for the development and management of library collections.
    Source
    Research and advanced technology for digital libraries : proceedings of the 12th European conference, ECDL '08, Aarhus, Denmark
  14. Börner, K.; Chen, C.; Boyack, K.W.: Visualizing knowledge domains (2002) 0.00
    0.0040284507 = product of:
      0.020142253 = sum of:
        0.020142253 = weight(_text_:of in 4286) [ClassicSimilarity], result of:
          0.020142253 = score(doc=4286,freq=52.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.30833945 = fieldWeight in 4286, product of:
              7.2111025 = tf(freq=52.0), with freq of:
                52.0 = termFreq=52.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4286)
      0.2 = coord(1/5)
    
    Abstract
    This chapter reviews visualization techniques that can be used to map the ever-growing domain structure of scientific disciplines and to support information retrieval and classification. In contrast to the comprehensive surveys conducted in traditional fashion by Howard White and Katherine McCain (1997, 1998), this survey not only reviews emerging techniques in interactive data analysis and information visualization, but also depicts the bibliographical structure of the field itself. The chapter starts by reviewing the history of knowledge domain visualization. We then present a general process flow for the visualization of knowledge domains and explain commonly used techniques. In order to visualize the domain reviewed by this chapter, we introduce a bibliographic data set of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, and visualization literatures. Using tutorial style, we then apply various algorithms to demonstrate the visualization effectsl produced by different approaches and compare the results. The domain visualizations reveal the relationships within and between the four fields that together constitute the focus of this chapter. We conclude with a general discussion of research possibilities. Painting a "big picture" of scientific knowledge has long been desirable for a variety of reasons. Traditional approaches are brute forcescholars must sort through mountains of literature to perceive the outlines of their field. Obviously, this is time-consuming, difficult to replicate, and entails subjective judgments. The task is enormously complex. Sifting through recently published documents to find those that will later be recognized as important is labor intensive. Traditional approaches struggle to keep up with the pace of information growth. In multidisciplinary fields of study it is especially difficult to maintain an overview of literature dynamics. Painting the big picture of an everevolving scientific discipline is akin to the situation described in the widely known Indian legend about the blind men and the elephant. As the story goes, six blind men were trying to find out what an elephant looked like. They touched different parts of the elephant and quickly jumped to their conclusions. The one touching the body said it must be like a wall; the one touching the tail said it was like a snake; the one touching the legs said it was like a tree trunk, and so forth. But science does not stand still; the steady stream of new scientific literature creates a continuously changing structure. The resulting disappearance, fusion, and emergence of research areas add another twist to the tale-it is as if the elephant is running and dynamically changing its shape. Domain visualization, an emerging field of study, is in a similar situation. Relevant literature is spread across disciplines that have traditionally had few connections. Researchers examining the domain from a particular discipline cannot possibly have an adequate understanding of the whole. As noted by White and McCain (1997), the new generation of information scientists is technically driven in its efforts to visualize scientific disciplines. However, limited progress has been made in terms of connecting pioneers' theories and practices with the potentialities of today's enabling technologies. If the difference between past and present generations lies in the power of available technologies, what they have in common is the ultimate goal-to reveal the development of scientific knowledge.
    Source
    Annual review of information science and technology. 37(2003), S.179-258
  15. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.00
    0.0039618923 = product of:
      0.019809462 = sum of:
        0.019809462 = product of:
          0.039618924 = sum of:
            0.039618924 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.039618924 = score(doc=2500,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    30. 1.2007 18:22:41
  16. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.00
    0.003909705 = product of:
      0.019548526 = sum of:
        0.019548526 = weight(_text_:of in 2700) [ClassicSimilarity], result of:
          0.019548526 = score(doc=2700,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2992506 = fieldWeight in 2700, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2700)
      0.2 = coord(1/5)
    
    Abstract
    Although information retrieval techniques used by Web search engines have improved substantially over the years, the results of Web searches have continued to be represented in simple list-based formats. Although the list-based representation makes it easy to evaluate a single document for relevance, it does not support the users in the broader tasks of manipulating or exploring the search results as they attempt to find a collection of relevant documents. HotMap is a meta-search system that provides a compact visual representation of Web search results at two levels of detail, and it supports interactive exploration via nested sorting of Web search results based on query term frequencies. An evaluation of the search results for a set of vague queries has shown that the re-sorted search results can provide a higher portion of relevant documents among the top search results. User studies show an increase in speed and effectiveness and a reduction in missed documents when comparing HotMap to the list-based representation used by Google. Subjective measures were positive, and users showed a preference for the HotMap interface. These results provide evidence for the utility of next-generation Web search results interfaces that promote interactive search results exploration.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.1, S.90-110
  17. Smith, T.R.; Zeng, M.L.: Concept maps supported by knowledge organization structures (2004) 0.00
    0.0038704101 = product of:
      0.01935205 = sum of:
        0.01935205 = weight(_text_:of in 2620) [ClassicSimilarity], result of:
          0.01935205 = score(doc=2620,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.29624295 = fieldWeight in 2620, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2620)
      0.2 = coord(1/5)
    
    Abstract
    Describes the use of concept maps as one of the semantic tools employed in the ADEPT (Alexandria Digital Earth Prototype) Digital Learning Environment (DLE) for teaching undergraduate classes. The graphic representation of the conceptualizations is derived from the knowledge in stronglystructured models (SSMs) of concepts represented in one or more knowledge bases. Such knowledge bases function as a source of "reference" information about concepts in a given context, including information about their scientific representation, scientific semantics, manipulation, and interrelationships to other concepts.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  18. Vizine-Goetz, D.: DeweyBrowser (2006) 0.00
    0.0038704101 = product of:
      0.01935205 = sum of:
        0.01935205 = weight(_text_:of in 5774) [ClassicSimilarity], result of:
          0.01935205 = score(doc=5774,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.29624295 = fieldWeight in 5774, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5774)
      0.2 = coord(1/5)
    
    Abstract
    The DeweyBrowser allows users to search and browse collections of library resources organized by the Dewey Decimal Classification (DDC) system. The visual interface provides access to several million records from the OCLC WorldCat database and to a collection of records derived from the abridged edition of DDC. The prototype was developed out of a desire to make the most of Dewey numbers assigned to library materials and to explore new ways of providing access to the DDC.
  19. Buchel, O.: Uncovering Hidden Clues about Geographic Visualization in LCC (2006) 0.00
    0.0038704101 = product of:
      0.01935205 = sum of:
        0.01935205 = weight(_text_:of in 231) [ClassicSimilarity], result of:
          0.01935205 = score(doc=231,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.29624295 = fieldWeight in 231, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=231)
      0.2 = coord(1/5)
    
    Abstract
    Geospatial information technologies revolutionize the way we have traditionally approached navigation and browsing in information systems. Colorful graphics, statistical summaries, geospatial relationships of underlying collections make them attractive for text retrieval systems. This paper examines the nature of georeferenced information in academic library catalogs organized according to the Library of Congress Classification (LCC) with the goal of understanding their implications for geovisualization of library collections.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  20. Heo, M.; Hirtle, S.C.: ¬An empirical comparison of visualization tools to assist information retrieval on the Web (2001) 0.00
    0.0038307128 = product of:
      0.019153563 = sum of:
        0.019153563 = weight(_text_:of in 5215) [ClassicSimilarity], result of:
          0.019153563 = score(doc=5215,freq=36.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2932045 = fieldWeight in 5215, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5215)
      0.2 = coord(1/5)
    
    Abstract
    The reader of a hypertext document in a web environment, if maximum use of the document is to be obtained, must visualize the overall structure of the paths through the document as well as the document space. Graphic visualization displays of this space, produced to assist in navigation, are classified into four groups, and Heo and Hirtle compare three of these classes as to their effectiveness. Distortion displays expand regions of interest while relatively diminishing the detail of the remaining regions. This technique will show both local detail and global structure. Zoom techniques use a series of increasingly focused displays of smaller and smaller areas, and can reduce cogitative overload, but do not provide an easy movement to other parts of the total space. Expanding outline displays use a tree structure to allow movement through a hierarchy of documents, but if the organization has a wide horizontal structure, or is not particularly hierarchical in nature such display can break down. Three dimensional layouts, which are not evaluated here, place objects by location in three space, providing more information and freedom. However, the space must be represented in two dimensions resulting in difficulty in visually judging depth, size and positioning. Ten students were assigned to each of eight groups composed of viewers of the three techniques and an unassisted control group using either a large (583 selected pages) or a small (50 selected pages) web space. Sets of 10 questions, which were designed to elicit the use of a visualization tool, were provided for each space. Accuracy and time spent were extracted from a log file. Users views were also surveyed after completion. ANOVA shows significant differences in accuracy and time based upon the visualization tool in use. A Tukey test shows zoom accuracy to be significantly less than expanding outline and zoom time to be significantly greater than both the outline and control groups. Size significantly affected accuracy and time, but had no interaction with tool type. While the expanding tool class out performed zoom and distortion, its performance was not significantly different from the control group.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.8, S.666-675

Authors

Languages

  • e 63
  • d 5
  • More… Less…

Types

  • a 52
  • el 12
  • m 8
  • x 3
  • b 1
  • p 1
  • s 1
  • More… Less…