Search (65 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.14
    0.1384162 = product of:
      0.24914916 = sum of:
        0.10067343 = weight(_text_:applications in 4820) [ClassicSimilarity], result of:
          0.10067343 = score(doc=4820,freq=8.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5836958 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.012701439 = weight(_text_:of in 4820) [ClassicSimilarity], result of:
          0.012701439 = score(doc=4820,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.0490556 = weight(_text_:systems in 4820) [ClassicSimilarity], result of:
          0.0490556 = score(doc=4820,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.070794985 = weight(_text_:software in 4820) [ClassicSimilarity], result of:
          0.070794985 = score(doc=4820,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.4555077 = fieldWeight in 4820, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.031847417 = score(doc=4820,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.5555556 = coord(5/9)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  2. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.06
    0.06416068 = product of:
      0.14436153 = sum of:
        0.08878562 = weight(_text_:applications in 4639) [ClassicSimilarity], result of:
          0.08878562 = score(doc=4639,freq=14.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.51477134 = fieldWeight in 4639, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.011975031 = weight(_text_:of in 4639) [ClassicSimilarity], result of:
          0.011975031 = score(doc=4639,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 4639, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.016351866 = weight(_text_:systems in 4639) [ClassicSimilarity], result of:
          0.016351866 = score(doc=4639,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 4639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.027249003 = weight(_text_:software in 4639) [ClassicSimilarity], result of:
          0.027249003 = score(doc=4639,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 4639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
      0.44444445 = coord(4/9)
    
    Abstract
    This thesis focuses on conversion of vocabularies for representation and integration of collections on the Semantic Web. A secondary focus is how to represent metadata schemas (RDF Schemas representing metadata element sets) such that they interoperate with vocabularies. The primary domain in which we operate is that of cultural heritage collections. The background worldview in which a solution is sought is that of the Semantic Web research paradigmwith its associated theories, methods, tools and use cases. In other words, we assume the SemanticWeb is in principle able to provide the context to realize interoperable collections. Interoperability is dependent on the interplay between representations and the applications that use them. We mean applications in the widest sense, such as "search" and "annotation". These applications or tasks are often present in software applications, such as the E-Culture application. It is therefore necessary that applications requirements on the vocabulary representation are met. This leads us to formulate the following problem statement: HOW CAN EXISTING VOCABULARIES BE MADE AVAILABLE TO SEMANTIC WEB APPLICATIONS?
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.
  3. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.04
    0.04371041 = product of:
      0.13113123 = sum of:
        0.08389453 = weight(_text_:applications in 3297) [ClassicSimilarity], result of:
          0.08389453 = score(doc=3297,freq=8.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 3297, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
        0.011833867 = weight(_text_:of in 3297) [ClassicSimilarity], result of:
          0.011833867 = score(doc=3297,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19316542 = fieldWeight in 3297, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
        0.03540283 = weight(_text_:systems in 3297) [ClassicSimilarity], result of:
          0.03540283 = score(doc=3297,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 3297, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
      0.33333334 = coord(3/9)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
    Source
    IEEE intelligent systems 2002, Jan./Feb., S.54-60
  4. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.03
    0.034636453 = product of:
      0.10390935 = sum of:
        0.05872617 = weight(_text_:applications in 267) [ClassicSimilarity], result of:
          0.05872617 = score(doc=267,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 267, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=267)
        0.016567415 = weight(_text_:of in 267) [ClassicSimilarity], result of:
          0.016567415 = score(doc=267,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 267, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=267)
        0.028615767 = weight(_text_:systems in 267) [ClassicSimilarity], result of:
          0.028615767 = score(doc=267,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 267, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=267)
      0.33333334 = coord(3/9)
    
    Abstract
    Domain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is- part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.
    Source
    Journal of Intelligent Information Systems
  5. Arenas, M.; Cuenca Grau, B.; Kharlamov, E.; Marciuska, S.; Zheleznyakov, D.: Faceted search over ontology-enhanced RDF data (2014) 0.03
    0.029688384 = product of:
      0.08906515 = sum of:
        0.050336715 = weight(_text_:applications in 2207) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2207,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2207, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2207)
        0.014200641 = weight(_text_:of in 2207) [ClassicSimilarity], result of:
          0.014200641 = score(doc=2207,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 2207, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2207)
        0.0245278 = weight(_text_:systems in 2207) [ClassicSimilarity], result of:
          0.0245278 = score(doc=2207,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 2207, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2207)
      0.33333334 = coord(3/9)
    
    Abstract
    An increasing number of applications rely on RDF, OWL2, and SPARQL for storing and querying data. SPARQL, however, is not targeted towards end-users, and suitable query interfaces are needed. Faceted search is a prominent approach for end-user data access, and several RDF-based faceted search systems have been developed. There is, however, a lack of rigorous theoretical underpinning for faceted search in the context of RDF and OWL2. In this paper, we provide such solid foundations. We formalise faceted interfaces for this context, identify a fragment of first-order logic capturing the underlying queries, and study the complexity of answering such queries for RDF and OWL2 profiles. We then study interface generation and update, and devise efficiently implementable algorithms. Finally, we have implemented and tested our faceted search algorithms for scalability, with encouraging results.
  6. Priss, U.: Description logic and faceted knowledge representation (1999) 0.03
    0.026490021 = product of:
      0.07947006 = sum of:
        0.021062955 = weight(_text_:of in 2655) [ClassicSimilarity], result of:
          0.021062955 = score(doc=2655,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 2655, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.042483397 = weight(_text_:systems in 2655) [ClassicSimilarity], result of:
          0.042483397 = score(doc=2655,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 2655, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2655,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  7. Blanco, E.; Cankaya, H.C.; Moldovan, D.: Composition of semantic relations : model and applications (2010) 0.02
    0.022137502 = product of:
      0.09961876 = sum of:
        0.083051346 = weight(_text_:applications in 4761) [ClassicSimilarity], result of:
          0.083051346 = score(doc=4761,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4815245 = fieldWeight in 4761, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4761)
        0.016567415 = weight(_text_:of in 4761) [ClassicSimilarity], result of:
          0.016567415 = score(doc=4761,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 4761, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4761)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper presents a framework for combining semantic relations extracted from text to reveal even more semantics that otherwise would be missed. A set of 26 relations is introduced, with their arguments defined on an ontology of sorts. A semantic parser is used to extract these relations from noun phrases and verb argument structures. The method was successfully used in two applications: rapid customization of semantic relations to arbitrary domains and recognizing entailments.
    Source
    Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Poster Volume, Beijing, China. Ed.: Chu-Ren Huang and Dan Jurafsky
  8. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.02
    0.021603964 = product of:
      0.06481189 = sum of:
        0.014200641 = weight(_text_:of in 3261) [ClassicSimilarity], result of:
          0.014200641 = score(doc=3261,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 3261, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3261)
        0.034687545 = weight(_text_:systems in 3261) [ClassicSimilarity], result of:
          0.034687545 = score(doc=3261,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 3261, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3261)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.031847417 = score(doc=3261,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Ontologies improve IR systems regarding its retrieval and presentation of information, which make the task of finding information more effective, efficient, and interactive. In this paper we argue that ontologies also greatly improve the engineering of such systems. We created a framework that uses ontology to drive the process of engineering an IR system. We developed a prototype that shows how a domain specialist without knowledge in the IR field can build an IR system with interactive components. The resulting system provides support for users not only to find their information needs but also to extend their state of knowledge. This way, our approach to ontology-enabled information retrieval addresses both the engineering aspect described here and also the usability aspect described elsewhere.
    Date
    28.11.2016 12:43:22
  9. Lange, C.: Ontologies and languages for representing mathematical knowledge on the Semantic Web (2011) 0.02
    0.021254174 = product of:
      0.06376252 = sum of:
        0.013388492 = weight(_text_:of in 135) [ClassicSimilarity], result of:
          0.013388492 = score(doc=135,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21854173 = fieldWeight in 135, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=135)
        0.023125032 = weight(_text_:systems in 135) [ClassicSimilarity], result of:
          0.023125032 = score(doc=135,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 135, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=135)
        0.027249003 = weight(_text_:software in 135) [ClassicSimilarity], result of:
          0.027249003 = score(doc=135,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=135)
      0.33333334 = coord(3/9)
    
    Abstract
    Mathematics is a ubiquitous foundation of science, technology, and engineering. Specific areas, such as numeric and symbolic computation or logics, enjoy considerable software support. Working mathematicians have recently started to adopt Web 2.0 environment, such as blogs and wikis, but these systems lack machine support for knowledge organization and reuse, and they are disconnected from tools such as computer algebra systems or interactive proof assistants.We argue that such scenarios will benefit from Semantic Web technology. Conversely, mathematics is still underrepresented on the Web of [Linked] Data. There are mathematics-related Linked Data, for example statistical government data or scientific publication databases, but their mathematical semantics has not yet been modeled. We argue that the services for the Web of Data will benefit from a deeper representation of mathematical knowledge. Mathematical knowledge comprises logical and functional structures - formulæ, statements, and theories -, a mixture of rigorous natural language and symbolic notation in documents, application-specific metadata, and discussions about conceptualizations, formalizations, proofs, and (counter-)examples. Our review of approaches to representing these structures covers ontologies for mathematical problems, proofs, interlinked scientific publications, scientific discourse, as well as mathematical metadata vocabularies and domain knowledge from pure and applied mathematics. Many fields of mathematics have not yet been implemented as proper Semantic Web ontologies; however, we show that MathML and OpenMath, the standard XML-based exchange languages for mathematical knowledge, can be fully integrated with RDF representations in order to contribute existing mathematical knowledge to theWeb of Data. We conclude with a roadmap for getting the mathematical Web of Data started: what datasets to publish, how to interlink them, and how to take advantage of these new connections.
  10. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.021253616 = product of:
      0.06376085 = sum of:
        0.016567415 = weight(_text_:of in 2654) [ClassicSimilarity], result of:
          0.016567415 = score(doc=2654,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 2654, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
        0.028615767 = weight(_text_:systems in 2654) [ClassicSimilarity], result of:
          0.028615767 = score(doc=2654,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2654,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
  11. Aitken, S.; Reid, S.: Evaluation of an ontology-based information retrieval tool (2000) 0.02
    0.019893078 = product of:
      0.08951885 = sum of:
        0.06711562 = weight(_text_:applications in 2862) [ClassicSimilarity], result of:
          0.06711562 = score(doc=2862,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 2862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=2862)
        0.022403233 = weight(_text_:of in 2862) [ClassicSimilarity], result of:
          0.022403233 = score(doc=2862,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 2862, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=2862)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper evaluates the use of an explicit domain ontology in an information retrieval tool. The evaluation compares the performance of ontology-enhanced retrieval with keyword retrieval for a fixed set of queries across several data sets. The robustness of the IR approach is assessed by comparing the performance of the tool on the original data set with that on previously unseen data.
    Content
    Beitrag für: Workshop on the Applications of Ontologies and Problem-Solving Methods, (eds) Gómez-Pérez, A., Benjamins, V.R., Guarino, N., and Uschold, M. European Conference on Artificial Intelligence 2000, Berlin.
  12. Hoang, H.H.; Tjoa, A.M: ¬The state of the art of ontology-based query systems : a comparison of existing approaches (2006) 0.02
    0.017566169 = product of:
      0.07904776 = sum of:
        0.022403233 = weight(_text_:of in 792) [ClassicSimilarity], result of:
          0.022403233 = score(doc=792,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 792, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=792)
        0.05664453 = weight(_text_:systems in 792) [ClassicSimilarity], result of:
          0.05664453 = score(doc=792,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4704818 = fieldWeight in 792, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=792)
      0.22222222 = coord(2/9)
    
    Abstract
    Based on an in-depth analysis of existing approaches in building ontology-based query systems we discuss and compare the methods, approaches to be used in current query systems using Ontology or the Semantic Web techniques. This paper identifies various relevant research directions in ontology-based querying research. Based on the results of our investigation we summarise the state of the art ontology-based query/search and name areas of further research activities.
  13. Wang, Y.-H.; Jhuo, P.-S.: ¬A semantic faceted search with rule-based inference (2009) 0.02
    0.01541975 = product of:
      0.069388874 = sum of:
        0.050336715 = weight(_text_:applications in 540) [ClassicSimilarity], result of:
          0.050336715 = score(doc=540,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.019052157 = weight(_text_:of in 540) [ClassicSimilarity], result of:
          0.019052157 = score(doc=540,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3109903 = fieldWeight in 540, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
      0.22222222 = coord(2/9)
    
    Abstract
    Semantic Search has become an active research of Semantic Web in recent years. The classification methodology plays a pretty critical role in the beginning of search process to disambiguate irrelevant information. However, the applications related to Folksonomy suffer from many obstacles. This study attempts to eliminate the problems resulted from Folksonomy using existing semantic technology. We also focus on how to effectively integrate heterogeneous ontologies over the Internet to acquire the integrity of domain knowledge. A faceted logic layer is abstracted in order to strengthen category framework and organize existing available ontologies according to a series of steps based on the methodology of faceted classification and ontology construction. The result showed that our approach can facilitate the integration of inconsistent or even heterogeneous ontologies. This paper also generalizes the principles of picking appropriate facets with which our facet browser completely complies so that better semantic search result can be obtained.
    Source
    Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I, IMECS 2009, March 18 - 20, 2009, Hong Kong
  14. Krötzsch, M.; Hitzler, P.; Ehrig, M.; Sure, Y.: Category theory in ontology research : concrete gain from an abstract approach (2004 (?)) 0.01
    0.01464283 = product of:
      0.06589273 = sum of:
        0.050336715 = weight(_text_:applications in 4538) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4538,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4538, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4538)
        0.015556021 = weight(_text_:of in 4538) [ClassicSimilarity], result of:
          0.015556021 = score(doc=4538,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 4538, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4538)
      0.22222222 = coord(2/9)
    
    Abstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies
  15. Machado, L.M.O.: Ontologies in knowledge organization (2021) 0.01
    0.014529166 = product of:
      0.065381244 = sum of:
        0.022897845 = weight(_text_:of in 198) [ClassicSimilarity], result of:
          0.022897845 = score(doc=198,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.37376386 = fieldWeight in 198, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=198)
        0.042483397 = weight(_text_:systems in 198) [ClassicSimilarity], result of:
          0.042483397 = score(doc=198,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 198, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=198)
      0.22222222 = coord(2/9)
    
    Abstract
    Within the knowledge organization systems (KOS) set, the term "ontology" is paradigmatic of the terminological ambiguity in different typologies. Contributing to this situation is the indiscriminate association of the term "ontology", both as a specific type of KOS and as a process of categorization, due to the interdisciplinary use of the term with different meanings. We present a systematization of the perspectives of different authors of ontologies, as representational artifacts, seeking to contribute to terminological clarification. Focusing the analysis on the intention, semantics and modulation of ontologies, it was possible to notice two broad perspectives regarding ontologies as artifacts that coexist in the knowledge organization systems spectrum. We have ontologies viewed, on the one hand, as an evolution in terms of complexity of traditional conceptual systems, and on the other hand, as a system that organizes ontological rather than epistemological knowledge. The focus of ontological analysis is the item to model and not the intentions that motivate the construction of the system.
  16. Bold, N.; Kim, W.-J.; Yang, J.-D.: Converting object-based thesauri into XML Topic Maps (2010) 0.01
    0.014341635 = product of:
      0.064537354 = sum of:
        0.050336715 = weight(_text_:applications in 4799) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4799,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4799, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4799)
        0.014200641 = weight(_text_:of in 4799) [ClassicSimilarity], result of:
          0.014200641 = score(doc=4799,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 4799, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4799)
      0.22222222 = coord(2/9)
    
    Abstract
    Constructing ontology is considerably time consuming process in general. Since there are a vast amount of thesauri currently available, it may be a feasible solution to exploit thesauri, when constructing ontology in a short period of time. This paper designs and implements a XTM (XML Topic Maps) code converter generating XTM coded ontology from an object based thesaurus. It is an extended thesaurus, which enriches the conventional thesauri with user defined associations, a notion of instances and occurrences associated with them. The reason we adopt XTM is that it is a verified and practical methodology to semantically reorganize the conceptual structure of extant web applications with minimal effort. Moreover, since XTM is conceptually similar to our object based thesauri, recommendation and inference mechanism already developed in our system could be easily applied to the generated XTM ontology. To show that the XTM ontology is correct, we also verify it with onto pia Omnigator and Vizigator, the components of Ontopia Knowledge Suite (OKS) tool.
  17. Sy, M.-F.; Ranwez, S.; Montmain, J.; Ragnault, A.; Crampes, M.; Ranwez, V.: User centered and ontology based information retrieval system for life sciences (2012) 0.01
    0.013521423 = product of:
      0.060846403 = sum of:
        0.04745791 = weight(_text_:applications in 699) [ClassicSimilarity], result of:
          0.04745791 = score(doc=699,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.27515686 = fieldWeight in 699, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=699)
        0.013388492 = weight(_text_:of in 699) [ClassicSimilarity], result of:
          0.013388492 = score(doc=699,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21854173 = fieldWeight in 699, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=699)
      0.22222222 = coord(2/9)
    
    Abstract
    Background: Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results: This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions: The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.
  18. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.01
    0.013483033 = product of:
      0.060673647 = sum of:
        0.014968789 = weight(_text_:of in 2208) [ClassicSimilarity], result of:
          0.014968789 = score(doc=2208,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 2208, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        0.045704857 = weight(_text_:systems in 2208) [ClassicSimilarity], result of:
          0.045704857 = score(doc=2208,freq=10.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.37961838 = fieldWeight in 2208, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
      0.22222222 = coord(2/9)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  19. Gladun, A.; Rogushina, J.: Development of domain thesaurus as a set of ontology concepts with use of semantic similarity and elements of combinatorial optimization (2021) 0.01
    0.012944991 = product of:
      0.058252458 = sum of:
        0.02963669 = weight(_text_:of in 572) [ClassicSimilarity], result of:
          0.02963669 = score(doc=572,freq=32.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.48376274 = fieldWeight in 572, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
        0.028615767 = weight(_text_:systems in 572) [ClassicSimilarity], result of:
          0.028615767 = score(doc=572,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
      0.22222222 = coord(2/9)
    
    Abstract
    We consider use of ontological background knowledge in intelligent information systems and analyze directions of their reduction in compliance with specifics of particular user task. Such reduction is aimed at simplification of knowledge processing without loss of significant information. We propose methods of generation of task thesauri based on domain ontology that contain such subset of ontological concepts and relations that can be used in task solving. Combinatorial optimization is used for minimization of task thesaurus. In this approach, semantic similarity estimates are used for determination of concept significance for user task. Some practical examples of optimized thesauri application for semantic retrieval and competence analysis demonstrate efficiency of proposed approach.
  20. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.01
    0.0123890005 = product of:
      0.0557505 = sum of:
        0.021062955 = weight(_text_:of in 2259) [ClassicSimilarity], result of:
          0.021062955 = score(doc=2259,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 2259, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2259)
        0.034687545 = weight(_text_:systems in 2259) [ClassicSimilarity], result of:
          0.034687545 = score(doc=2259,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 2259, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2259)
      0.22222222 = coord(2/9)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.

Years

Languages

  • e 61
  • d 3
  • More… Less…

Types