Search (49 results, page 3 of 3)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.00769551 = product of:
      0.01539102 = sum of:
        0.01539102 = product of:
          0.03078204 = sum of:
            0.03078204 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03078204 = score(doc=4553,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.11.2018 14:22:01
  2. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 230) [ClassicSimilarity], result of:
              0.02856791 = score(doc=230,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  3. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 2659) [ClassicSimilarity], result of:
              0.02856791 = score(doc=2659,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
  4. Arp, R.; Smith, B.; Spear, A.D.: Building ontologies with basic formal ontology (2015) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 3444) [ClassicSimilarity], result of:
              0.02856791 = score(doc=3444,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 3444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3444)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    What Is an Ontology? - Kinds of Ontologies and the Role of Taxonomies - Principles of Best Practice 1: Domain Ontology Design - Principles of Best Practice II: Terms, Definitions, and Classification - Introduction to Basic Formal Ontology I: Continuants - Introduction to Basic Formal Ontology II: Occurrents - The Ontology of Relations - Basic Formal Ontology at Work - Appendix on Implementation: Languages, Editors, Reasoners, Browsers, Tools for Reuse - Glossary - Web Links Mentioned in the Text Including Ontologies, Research Groups, Software, and Reasoning Tools
  5. Frické, M.: Logic and the organization of information (2012) 0.01
    0.0062492304 = product of:
      0.012498461 = sum of:
        0.012498461 = product of:
          0.024996921 = sum of:
            0.024996921 = weight(_text_:i in 1782) [ClassicSimilarity], result of:
              0.024996921 = score(doc=1782,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.14585242 = fieldWeight in 1782, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  6. Eito-Brun, R.: Ontologies and the exchange of technical information : building a knowledge repository based on ECSS standards (2014) 0.01
    0.0061564078 = product of:
      0.0123128155 = sum of:
        0.0123128155 = product of:
          0.024625631 = sum of:
            0.024625631 = weight(_text_:22 in 1436) [ClassicSimilarity], result of:
              0.024625631 = score(doc=1436,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.15476047 = fieldWeight in 1436, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1436)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.0061564078 = product of:
      0.0123128155 = sum of:
        0.0123128155 = product of:
          0.024625631 = sum of:
            0.024625631 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.024625631 = score(doc=1634,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  8. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.01
    0.0061564078 = product of:
      0.0123128155 = sum of:
        0.0123128155 = product of:
          0.024625631 = sum of:
            0.024625631 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.024625631 = score(doc=4399,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  9. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.01
    0.005386857 = product of:
      0.010773714 = sum of:
        0.010773714 = product of:
          0.021547427 = sum of:
            0.021547427 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.021547427 = score(doc=1633,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22

Authors

Languages

  • e 41
  • d 7
  • sp 1
  • More… Less…

Types

  • a 38
  • el 8
  • m 6
  • x 3
  • s 2
  • r 1
  • More… Less…