Search (50 results, page 3 of 3)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2020 TO 2030}
  1. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo (2020) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 53) [ClassicSimilarity], result of:
              0.00669738 = score(doc=53,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 53, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=53)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    # Community action on individual ontologies We would like to call on all ontology maintainers and consumers to help us increase the average star rating of the web of ontologies by fixing and improving its ontologies. You can easily check an ontology at https://archivo.dbpedia.org/info. If you are an ontology maintainer just release a patched version - archivo will automatically pick it up 8 hours later. If you are a user of an ontology and want your consumed data to become FAIRer, please inform the ontology maintainer about the issues found with Archivo. The star rating is very basic and only requires fixing small things. However, theimpact on technical and legal usability can be immense.
    # Community action on all ontologies (quality, FAIRness, conformity) Archivo is extensible and allows contributions to give consumers a central place to encode their requirements. We envision fostering adherence to standards and strengthening incentives for publishers to build a better (FAIRer) web of ontologies. 1. SHACL (https://www.w3.org/TR/shacl/, co-edited by DBpedia's CTO D. Kontokostas) enables easy testing of ontologies. Archivo offers free SHACL continuous integration testing for ontologies. Anyone can implement their SHACL tests and add them to the SHACL library on Github. We believe that there are many synergies, i.e. SHACL tests for your ontology are helpful for others as well. 2. We are looking for ontology experts to join DBpedia and discuss further validation (e.g. stars) to increase FAIRness and quality of ontologies. We are forming a steering committee and also a PC for the upcoming Vocarnival at SEMANTiCS 2021. Please message hellmann@informatik.uni-leipzig.de <mailto:hellmann@informatik.uni-leipzig.de>if you would like to join. We would like to extend the Archivo platform with relevant visualisations, tests, editing aides, mapping management tools and quality checks.
    # How does Archivo work? Each week Archivo runs several discovery algorithms to scan for new ontologies. Once discovered Archivo checks them every 8 hours. When changes are detected, Archivo downloads and rates and archives the latest snapshot persistently on the DBpedia Databus. # Archivo's mission Archivo's mission is to improve FAIRness (findability, accessibility, interoperability, and reusability) of all available ontologies on the Semantic Web. Archivo is not a guideline, it is fully automated, machine-readable and enforces interoperability with its star rating. - Ontology developers can implement against Archivo until they reach more stars. The stars and tests are designed to guarantee the interoperability and fitness of the ontology. - Ontology users can better find, access and re-use ontologies. Snapshots are persisted in case the original is not reachable anymore adding a layer of reliability to the decentral web of ontologies.
  2. Biagetti, M.T.: Ontologies as knowledge organization systems (2021) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 439) [ClassicSimilarity], result of:
              0.00669738 = score(doc=439,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 439, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=439)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This contribution presents the principal features of ontologies, drawing special attention to the comparison between ontologies and the different kinds of know­ledge organization systems (KOS). The focus is on the semantic richness exhibited by ontologies, which allows the creation of a great number of relationships between terms. That establishes ontologies as the most evolved type of KOS. The concepts of "conceptualization" and "formalization" and the key components of ontologies are described and discussed, along with upper and domain ontologies and special typologies, such as bibliographical ontologies and biomedical ontologies. The use of ontologies in the digital libraries environment, where they have replaced thesauri for query expansion in searching, and the role they are playing in the Semantic Web, especially for semantic interoperability, are sketched.
    Type
    a
  3. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 667) [ClassicSimilarity], result of:
              0.00669738 = score(doc=667,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 667, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Gil-Berrozpe, J.C.: Description, categorization, and representation of hyponymy in environmental terminology (2022) 0.00
    0.0015127839 = product of:
      0.0030255679 = sum of:
        0.0030255679 = product of:
          0.0060511357 = sum of:
            0.0060511357 = weight(_text_:a in 1004) [ClassicSimilarity], result of:
              0.0060511357 = score(doc=1004,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11394546 = fieldWeight in 1004, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1004)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Terminology has evolved from static and prescriptive theories to dynamic and cognitive approaches. Thanks to these approaches, there have been significant advances in the design and elaboration of terminological resources. This has resulted in the creation of tools such as terminological knowledge bases, which are able to show how concepts are interrelated through different semantic or conceptual relations. Of these relations, hyponymy is the most relevant to terminology work because it deals with concept categorization and term hierarchies. This doctoral thesis presents an enhancement of the semantic structure of EcoLexicon, a terminological knowledge base on environmental science. The aim of this research was to improve the description, categorization, and representation of hyponymy in environmental terminology. Therefore, we created HypoLexicon, a new stand-alone module for EcoLexicon in the form of a hyponymy-based terminological resource. This resource contains twelve terminological entries from four specialized domains (Biology, Chemistry, Civil Engineering, and Geology), which consist of 309 concepts and 465 terms associated with those concepts. This research was mainly based on the theoretical premises of Frame-based Terminology. This theory was combined with Cognitive Linguistics, for conceptual description and representation; Corpus Linguistics, for the extraction and processing of linguistic and terminological information; and Ontology, related to hyponymy and relevant for concept categorization. HypoLexicon was constructed from the following materials: (i) the EcoLexicon English Corpus; (ii) other specialized terminological resources, including EcoLexicon; (iii) Sketch Engine; and (iv) Lexonomy. This thesis explains the methodologies applied for corpus extraction and compilation, corpus analysis, the creation of conceptual hierarchies, and the design of the terminological template. The results of the creation of HypoLexicon are discussed by highlighting the information in the hyponymy-based terminological entries: (i) parent concept (hypernym); (ii) child concepts (hyponyms, with various hyponymy levels); (iii) terminological definitions; (iv) conceptual categories; (v) hyponymy subtypes; and (vi) hyponymic contexts. Furthermore, the features and the navigation within HypoLexicon are described from the user interface and the admin interface. In conclusion, this doctoral thesis lays the groundwork for developing a terminological resource that includes definitional, relational, ontological and contextual information about specialized hypernyms and hyponyms. All of this information on specialized knowledge is simple to follow thanks to the hierarchical structure of the terminological template used in HypoLexicon. Therefore, not only does it enhance knowledge representation, but it also facilitates its acquisition.
    Type
    a
  5. Ghosh, S.S.; Das, S.; Chatterjee, S.K.: Human-centric faceted approach for ontology construction (2020) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 5731) [ClassicSimilarity], result of:
              0.005858987 = score(doc=5731,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 5731, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5731)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we propose an ontology building method, called human-centric faceted approach for ontology construction (HCFOC). HCFOC uses the human-centric approach, improvised with the idea of selective dissemination of information (SDI), to deal with context. Further, this ontology construction process makes use of facet analysis and an analytico-synthetic classification approach. This novel fusion contributes to the originality of HCFOC and distinguishes it from other existing ontology construction methodologies. Based on HCFOC, an ontology of the tourism domain has been designed using the Protégé-5.5.0 ontology editor. The HCFOC methodology has provided the necessary flexibility, extensibility, robustness and has facilitated the capturing of background knowledge. It models the tourism ontology in such a way that it is able to deal with the context of a tourist's information need with precision. This is evident from the result that more than 90% of the user's queries were successfully met. The use of domain knowledge and techniques from both library and information science and computer science has helped in the realization of the desired purpose of this ontology construction process. It is envisaged that HCFOC will have implications for ontology developers. The demonstrated tourism ontology can support any tourism information retrieval system.
    Type
    a
  6. Fagundes, P.B.; Freund, G.P.; Vital, L.P.; Monteiro de Barros, C.; Macedo, D.D.J.de: Taxonomias, ontologias e tesauros : possibilidades de contribuição para o processo de Engenharia de Requisitos (2020) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 5828) [ClassicSimilarity], result of:
              0.005858987 = score(doc=5828,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 5828, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5828)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Some of the fundamental activities of the software development process are related to the discipline of Requirements Engineering, whose objective is the discovery, analysis, documentation and verification of the requirements that will be part of the system. Requirements are the conditions or capabilities that software must have or perform to meet the users needs. The present study is being developed to propose a model of cooperation between Information Science and Requirements Engineering. Aims to present the analysis results on the possibilities of using the knowledge organization systems: taxonomies, thesauri and ontologies during the activities of Requirements Engineering: design, survey, elaboration, negotiation, specification, validation and requirements management. From the results obtained it was possible to identify in which stage of the Requirements Engineering process, each type of knowledge organization system could be used. We expect that this study put in evidence the need for new researchs and proposals to strengt the exchange between Information Science, as a science that has information as object of study, and the Requirements Engineering which has in the information the raw material to identify the informational needs of software users.
    Type
    a
  7. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 4964) [ClassicSimilarity], result of:
              0.005740611 = score(doc=4964,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 4964, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4964)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
    Type
    a
  8. Jiang, Y.-C.; Li, H.: ¬The theoretical basis and basic principles of knowledge network construction in digital library (2023) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 1130) [ClassicSimilarity], result of:
              0.005740611 = score(doc=1130,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 1130, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1130)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge network construction (KNC) is the essence of dynamic knowledge architecture, and is helpful to illustrate ubiquitous knowledge service in digital libraries (DLs). The authors explore its theoretical foundations and basic rules to elucidate the basic principles of KNC in DLs. The results indicate that world general connection, small-world phenomenon, relevance theory, unity and continuity of science development have been the production tool, architecture aim and scientific foundation of KNC in DLs. By analyzing both the characteristics of KNC based on different types of knowledge linking and the relationships between different forms of knowledge and the appropriate ways of knowledge linking, the basic principle of KNC is summarized as follows: let each kind of knowledge linking form each shows its ability, each kind of knowledge manifestation each answer the purpose intended in practice, and then subjective knowledge network and objective knowledge network are organically combined. This will lay a solid theoretical foundation and provide an action guide for DLs to construct knowledge networks.
    Type
    a
  9. Si, L.; Zhou, J.: Ontology and linked data of Chinese great sites information resources from users' perspective (2022) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1115) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1115,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1115, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1115)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Great Sites are closely related to the residents' life, urban and rural development. In the process of rapid urbanization in China, the protection and utilization of Great Sites are facing unprecedented pressure. Effective knowl­edge organization with ontology and linked data of Great Sites is a prerequisite for their protection and utilization. In this paper, an interview is conducted to understand the users' awareness towards Great Sites to build the user-centered ontology. As for designing the Great Site ontology, firstly, the scope of Great Sites is determined. Secondly, CIDOC- CRM and OWL-Time Ontology are reused combining the results of literature research and user interviews. Thirdly, the top-level structure and the specific instances are determined to extract knowl­edge concepts of Great Sites. Fourthly, they are transformed into classes, data properties and object properties of the Great Site ontology. Later, based on the linked data technology, taking the Great Sites in Xi'an Area as an example, this paper uses D2RQ to publish the linked data set of the knowl­edge of the Great Sites and realize its opening and sharing. Semantic services such as semantic annotation, semantic retrieval and reasoning are provided based on the ontology.
    Type
    a
  10. Auer, S.; Sens, I.; Stocker, M.: Erschließung wissenschaftlicher Literatur mit dem Open Research Knowledge Graph (2020) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 551) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=551,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 551, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=551)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Authors

Languages

  • e 43
  • pt 4
  • d 2
  • More… Less…

Types

  • a 45
  • el 13
  • p 4
  • A 1
  • EL 1
  • More… Less…