Search (253 results, page 1 of 13)

  • × theme_ss:"Wissensrepräsentation"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.07
    0.074059054 = product of:
      0.111088574 = sum of:
        0.08056292 = product of:
          0.24168874 = sum of:
            0.24168874 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.24168874 = score(doc=400,freq=2.0), product of:
                0.43003735 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050723847 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.03052565 = weight(_text_:based in 400) [ClassicSimilarity], result of:
          0.03052565 = score(doc=400,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.19973516 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.6666667 = coord(2/3)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
    Source
    Graph-Based Methods for Natural Language Processing - proceedings of the Thirteenth Workshop (TextGraphs-13): November 4, 2019, Hong Kong : EMNLP-IJCNLP 2019. Ed.: Dmitry Ustalov
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.07
    0.06614238 = product of:
      0.09921357 = sum of:
        0.053708613 = product of:
          0.16112584 = sum of:
            0.16112584 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16112584 = score(doc=5820,freq=2.0), product of:
                0.43003735 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050723847 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.045504954 = weight(_text_:based in 5820) [ClassicSimilarity], result of:
          0.045504954 = score(doc=5820,freq=10.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.2977476 = fieldWeight in 5820, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.6666667 = coord(2/3)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.06
    0.06293966 = product of:
      0.09440948 = sum of:
        0.053708613 = product of:
          0.16112584 = sum of:
            0.16112584 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16112584 = score(doc=701,freq=2.0), product of:
                0.43003735 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050723847 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.040700868 = weight(_text_:based in 701) [ClassicSimilarity], result of:
          0.040700868 = score(doc=701,freq=8.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.26631355 = fieldWeight in 701, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6666667 = coord(2/3)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  4. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.05
    0.053994305 = product of:
      0.080991454 = sum of:
        0.06896479 = weight(_text_:based in 1633) [ClassicSimilarity], result of:
          0.06896479 = score(doc=1633,freq=30.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.45124975 = fieldWeight in 1633, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1633)
        0.012026667 = product of:
          0.024053333 = sum of:
            0.024053333 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.024053333 = score(doc=1633,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to improve the conceptual-based search by incorporating structural ontological information such as concepts and relations. Generally, Semantic-based information retrieval aims to identify relevant information based on the meanings of the query terms or on the context of the terms and the performance of semantic information retrieval is carried out through standard measures-precision and recall. Higher precision leads to the (meaningful) relevant documents obtained and lower recall leads to the less coverage of the concepts. Design/methodology/approach - In this paper, the authors enhance the existing ontology-based indexing proposed by Kohler et al., by incorporating sibling information to the index. The index designed by Kohler et al., contains only super and sub-concepts from the ontology. In addition, in our approach, we focus on two tasks; query expansion and ranking of the expanded queries, to improve the efficiency of the ontology-based search. The aforementioned tasks make use of ontological concepts, and relations existing between those concepts so as to obtain semantically more relevant search results for a given query. Findings - The proposed ontology-based indexing technique is investigated by analysing the coverage of concepts that are being populated in the index. Here, we introduce a new measure called index enhancement measure, to estimate the coverage of ontological concepts being indexed. We have evaluated the ontology-based search for the tourism domain with the tourism documents and tourism-specific ontology. The comparison of search results based on the use of ontology "with and without query expansion" is examined to estimate the efficiency of the proposed query expansion task. The ranking is compared with the ORank system to evaluate the performance of our ontology-based search. From these analyses, the ontology-based search results shows better recall when compared to the other concept-based search systems. The mean average precision of the ontology-based search is found to be 0.79 and the recall is found to be 0.65, the ORank system has the mean average precision of 0.62 and the recall is found to be 0.51, while the concept-based search has the mean average precision of 0.56 and the recall is found to be 0.42. Practical implications - When the concept is not present in the domain-specific ontology, the concept cannot be indexed. When the given query term is not available in the ontology then the term-based results are retrieved. Originality/value - In addition to super and sub-concepts, we incorporate the concepts present in same level (siblings) to the ontological index. The structural information from the ontology is determined for the query expansion. The ranking of the documents depends on the type of the query (single concept query, multiple concept queries and concept with relation queries) and the ontological relations that exists in the query and the documents. With this ontological structural information, the search results showed us better coverage of concepts with respect to the query.
    Date
    20. 1.2015 18:30:22
  5. Town, C.: Ontological inference for image and video analysis (2006) 0.05
    0.053229168 = product of:
      0.07984375 = sum of:
        0.04316979 = weight(_text_:based in 132) [ClassicSimilarity], result of:
          0.04316979 = score(doc=132,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.28246817 = fieldWeight in 132, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=132)
        0.036673963 = product of:
          0.073347926 = sum of:
            0.073347926 = weight(_text_:training in 132) [ClassicSimilarity], result of:
              0.073347926 = score(doc=132,freq=2.0), product of:
                0.23690371 = queryWeight, product of:
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.050723847 = queryNorm
                0.3096107 = fieldWeight in 132, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.046875 = fieldNorm(doc=132)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents an approach to designing and implementing extensible computational models for perceiving systems based on a knowledge-driven joint inference approach. These models can integrate different sources of information both horizontally (multi-modal and temporal fusion) and vertically (bottom-up, top-down) by incorporating prior hierarchical knowledge expressed as an extensible ontology.Two implementations of this approach are presented. The first consists of a content-based image retrieval system that allows users to search image databases using an ontological query language. Queries are parsed using a probabilistic grammar and Bayesian networks to map high-level concepts onto low-level image descriptors, thereby bridging the 'semantic gap' between users and the retrieval system. The second application extends the notion of ontological languages to video event detection. It is shown how effective high-level state and event recognition mechanisms can be learned from a set of annotated training sequences by incorporating syntactic and semantic constraints represented by an ontology.
  6. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.05
    0.048992746 = product of:
      0.073489115 = sum of:
        0.052871976 = weight(_text_:based in 2230) [ClassicSimilarity], result of:
          0.052871976 = score(doc=2230,freq=6.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.34595144 = fieldWeight in 2230, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2230)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.041234285 = score(doc=2230,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We present a deductive data model for concept-based query expansion. It is based on three abstraction levels: the conceptual, linguistic and occurrence levels. Concepts and relationships among them are represented at the conceptual level. The expression level represents natural language expressions for concepts. Each expression has one or more matching models at the occurrence level. Each model specifies the matching of the expression in database indices built in varying ways. The data model supports a concept-based query expansion and formulation tool, the ExpansionTool, for environments providing heterogeneous IR systems. Expansion is controlled by adjustable matching reliability.
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  7. Das, S.; Roy, S.: Faceted ontological model for brain tumour study (2016) 0.05
    0.04537136 = product of:
      0.06805704 = sum of:
        0.050876085 = weight(_text_:based in 2831) [ClassicSimilarity], result of:
          0.050876085 = score(doc=2831,freq=8.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.33289194 = fieldWeight in 2831, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2831)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 2831) [ClassicSimilarity], result of:
              0.034361906 = score(doc=2831,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 2831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2831)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The purpose of this work is to develop an ontology-based framework for developing an information retrieval system to cater to specific queries of users. For creating such an ontology, information was obtained from a wide range of information sources involved with brain tumour study and research. The information thus obtained was compiled and analysed to provide a standard, reliable and relevant information base to aid our proposed system. Facet-based methodology has been used for ontology formalization for quite some time. Ontology formalization involves different steps such as identification of the terminology, analysis, synthesis, standardization and ordering. A vast majority of the ontologies being developed nowadays lack flexibility. This becomes a formidable constraint when it comes to interoperability. We found that a facet-based method provides a distinct guideline for the development of a robust and flexible model concerning the domain of brain tumours. Our attempt has been to bridge library and information science and computer science, which itself involved an experimental approach. It was discovered that a faceted approach is really enduring, as it helps in the achievement of properties like navigation, exploration and faceted browsing. Computer-based brain tumour ontology supports the work of researchers towards gathering information on brain tumour research and allows users across the world to intelligently access new scientific information quickly and efficiently.
    Date
    12. 3.2016 13:21:22
  8. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.05
    0.045057967 = product of:
      0.06758695 = sum of:
        0.053842187 = weight(_text_:based in 4399) [ClassicSimilarity], result of:
          0.053842187 = score(doc=4399,freq=14.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.35229972 = fieldWeight in 4399, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.013744762 = product of:
          0.027489524 = sum of:
            0.027489524 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.027489524 = score(doc=4399,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Indexing plays a vital role in Information Retrieval. With the availability of huge volume of information, it has become necessary to index the information in such a way to make easier for the end users to find the information they want efficiently and accurately. Keyword-based indexing uses words as indexing terms. It is not capable of capturing the implicit relation among terms or the semantics of the words in the document. To eliminate this limitation, ontology-based indexing came into existence, which allows semantic based indexing to solve complex and indirect user queries. Ontologies are used for document indexing which allows semantic based information retrieval. Existing ontologies or the ones constructed from scratch are used presently for indexing. Constructing ontologies from scratch is a labor-intensive task and requires extensive domain knowledge whereas use of an existing ontology may leave some important concepts in documents un-annotated. Using multiple ontologies can overcome the problem of missing out concepts to a great extent, but it is difficult to manage (changes in ontologies over time by their developers) multiple ontologies and ontology heterogeneity also arises due to ontologies constructed by different ontology developers. One possible solution to managing multiple ontologies and build from scratch is to use modular ontologies for indexing.
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Date
    20. 1.2015 18:30:22
  9. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.04
    0.039777733 = product of:
      0.059666596 = sum of:
        0.03561326 = weight(_text_:based in 3694) [ClassicSimilarity], result of:
          0.03561326 = score(doc=3694,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23302436 = fieldWeight in 3694, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3694)
        0.024053333 = product of:
          0.048106667 = sum of:
            0.048106667 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.048106667 = score(doc=3694,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A method to develop a prototype domain ontology has been described. The domain selected for the study is Accelerator Driven Systems. This is a multidisciplinary and interdisciplinary subject comprising Nuclear Physics, Nuclear and Reactor Engineering, Reactor Fuels and Radioactive Waste Management. Since Accelerator Driven Systems is a vast topic, select areas in it were singled out for the study. Both qualitative and quantitative methods such as Content analysis, Facet analysis and Clustering were used, to develop the web-based model.
    Date
    22. 7.2010 19:41:16
  10. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.04
    0.039777733 = product of:
      0.059666596 = sum of:
        0.03561326 = weight(_text_:based in 1437) [ClassicSimilarity], result of:
          0.03561326 = score(doc=1437,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23302436 = fieldWeight in 1437, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1437)
        0.024053333 = product of:
          0.048106667 = sum of:
            0.048106667 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.048106667 = score(doc=1437,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper describes to construct faceted ontologies for domain modeling. Building upon the faceted theory of S.R. Ranganathan (1967), the paper intends to address the faceted classification approach applied to build domain ontologies. As classificatory ontologies are employed to represent the relationships of entities and objects on the web, the faceted approach helps to analyze domain representation in an effective way for modeling. Based on this perspective, an ontology of the music domain has been analyzed that would serve as a case study.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Eito-Brun, R.: Ontologies and the exchange of technical information : building a knowledge repository based on ECSS standards (2014) 0.04
    0.03629709 = product of:
      0.05444563 = sum of:
        0.040700868 = weight(_text_:based in 1436) [ClassicSimilarity], result of:
          0.040700868 = score(doc=1436,freq=8.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.26631355 = fieldWeight in 1436, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=1436)
        0.013744762 = product of:
          0.027489524 = sum of:
            0.027489524 = weight(_text_:22 in 1436) [ClassicSimilarity], result of:
              0.027489524 = score(doc=1436,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.15476047 = fieldWeight in 1436, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1436)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The development of complex projects in the aerospace industry is based on the collaboration of geographically distributed teams and companies. In this context, the need of sharing different types of data and information is a key factor to assure the successful execution of the projects. In the case of European projects, the ECSS standards provide a normative framework that specifies, among other requirements, the different document types, information items and artifacts that need to be generated. The specification of the characteristics of these information items are usually incorporated as annex to the different ECSS standards, and they provide the intended purpose, scope, and structure of the documents and information items. In these standards, documents or deliverables should not be considered as independent items, but as the results of packaging different information artifacts for their delivery between the involved parties. Successful information integration and knowledge exchange cannot be based exclusively on the conceptual definition of information types. It also requires the definition of methods and techniques for serializing and exchanging these documents and artifacts. This area is not covered by ECSS standards, and the definition of these data schemas would improve the opportunity for improving collaboration processes among companies. This paper describes the development of an OWL-based ontology to manage the different artifacts and information items requested in the European Space Agency (ESA) ECSS standards for SW development. The ECSS set of standards is the main reference in aerospace projects in Europe, and in addition to engineering and managerial requirements they provide a set of DRD (Document Requirements Documents) with the structure of the different documents and records necessary to manage projects and describe intermediate information products and final deliverables. Information integration is a must-have in aerospace projects, where different players need to collaborate and share data during the life cycle of the products about requirements, design elements, problems, etc. The proposed ontology provides the basis for building advanced information systems where the information coming from different companies and institutions can be integrated into a coherent set of related data. It also provides a conceptual framework to enable the development of interfaces and gateways between the different tools and information systems used by the different players in aerospace projects.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.04
    0.035437185 = product of:
      0.053155776 = sum of:
        0.035974823 = weight(_text_:based in 4607) [ClassicSimilarity], result of:
          0.035974823 = score(doc=4607,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23539014 = fieldWeight in 4607, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.034361906 = score(doc=4607,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  13. Almeida Campos, M.L. de; Machado Campos, M.L.; Dávila, A.M.R.; Espanha Gomes, H.; Campos, L.M.; Lira e Oliveira, L. de: Information sciences methodological aspects applied to ontology reuse tools : a study based on genomic annotations in the domain of trypanosomatides (2013) 0.04
    0.035437185 = product of:
      0.053155776 = sum of:
        0.035974823 = weight(_text_:based in 635) [ClassicSimilarity], result of:
          0.035974823 = score(doc=635,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23539014 = fieldWeight in 635, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=635)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 635) [ClassicSimilarity], result of:
              0.034361906 = score(doc=635,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=635)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Despite the dissemination of modeling languages and tools for representation and construction of ontologies, their underlying methodologies can still be improved. As a consequence, ontology tools can be enhanced accordingly, in order to support users through the ontology construction process. This paper proposes suggestions for ontology tools' improvement based on a case study within the domain of bioinformatics, applying a reuse method ology. Quantitative and qualitative analyses were carried out on a subset of 28 terms of Gene Ontology on a semi-automatic alignment with other biomedical ontologies. As a result, a report is presented containing suggestions for enhancing ontology reuse tools, which is a product derived from difficulties that we had in reusing a set of OBO ontologies. For the reuse process, a set of steps closely related to those of Pinto and Martin's methodology was used. In each step, it was observed that the experiment would have been significantly improved if ontology manipulation tools had provided certain features. Accordingly, problematic aspects in ontology tools are presented and suggestions are made aiming at getting better results in ontology reuse.
    Date
    22. 2.2013 12:03:53
  14. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.03
    0.034095198 = product of:
      0.051142793 = sum of:
        0.03052565 = weight(_text_:based in 2623) [ClassicSimilarity], result of:
          0.03052565 = score(doc=2623,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.19973516 = fieldWeight in 2623, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2623)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
              0.041234285 = score(doc=2623,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 2623, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2623)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Contemporary retrieval systems, which search across collections, usually ignore collection-level metadata. Alternative approaches, exploiting collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection/item metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata creators describing objects, and (iii) system designers implementing systems that take advantage of collection-level metadata. We present three examples of collection/item metadata relationship categories, attribute/value-propagation, value-propagation, and value-constraint and show that even in these simple cases a precise formulation requires modal notions in addition to first-order logic. These formulations are related to recent work in information retrieval and ontology evaluation.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  15. Hoang, H.H.; Tjoa, A.M: ¬The state of the art of ontology-based query systems : a comparison of existing approaches (2006) 0.03
    0.033232123 = product of:
      0.09969636 = sum of:
        0.09969636 = weight(_text_:based in 792) [ClassicSimilarity], result of:
          0.09969636 = score(doc=792,freq=12.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.6523323 = fieldWeight in 792, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0625 = fieldNorm(doc=792)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on an in-depth analysis of existing approaches in building ontology-based query systems we discuss and compare the methods, approaches to be used in current query systems using Ontology or the Semantic Web techniques. This paper identifies various relevant research directions in ontology-based querying research. Based on the results of our investigation we summarise the state of the art ontology-based query/search and name areas of further research activities.
  16. Paralic, J.; Kostial, I.: Ontology-based information retrieval (2003) 0.03
    0.031407945 = product of:
      0.09422383 = sum of:
        0.09422383 = weight(_text_:based in 1153) [ClassicSimilarity], result of:
          0.09422383 = score(doc=1153,freq=14.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.6165245 = fieldWeight in 1153, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1153)
      0.33333334 = coord(1/3)
    
    Abstract
    In the proposed article a new, ontology-based approach to information retrieval (IR) is presented. The system is based on a domain knowledge representation schema in form of ontology. New resources registered within the system are linked to concepts from this ontology. In such a way resources may be retrieved based on the associations and not only based on partial or exact term matching as the use of vector model presumes In order to evaluate the quality of this retrieval mechanism, experiments to measure retrieval efficiency have been performed with well-known Cystic Fibrosis collection of medical scientific papers. The ontology-based retrieval mechanism has been compared with traditional full text search based on vector IR model as well as with the Latent Semantic Indexing method.
  17. Cui, H.: Competency evaluation of plant character ontologies against domain literature (2010) 0.03
    0.028412666 = product of:
      0.042618997 = sum of:
        0.025438042 = weight(_text_:based in 3466) [ClassicSimilarity], result of:
          0.025438042 = score(doc=3466,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.16644597 = fieldWeight in 3466, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3466)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 3466) [ClassicSimilarity], result of:
              0.034361906 = score(doc=3466,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 3466, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3466)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Specimen identification keys are still the most commonly created tools used by systematic biologists to access biodiversity information. Creating identification keys requires analyzing and synthesizing large amounts of information from specimens and their descriptions and is a very labor-intensive and time-consuming activity. Automating the generation of identification keys from text descriptions becomes a highly attractive text mining application in the biodiversity domain. Fine-grained semantic annotation of morphological descriptions of organisms is a necessary first step in generating keys from text. Machine-readable ontologies are needed in this process because most biological characters are only implied (i.e., not stated) in descriptions. The immediate question to ask is How well do existing ontologies support semantic annotation and automated key generation? With the intention to either select an existing ontology or develop a unified ontology based on existing ones, this paper evaluates the coverage, semantic consistency, and inter-ontology agreement of a biodiversity character ontology and three plant glossaries that may be turned into ontologies. The coverage and semantic consistency of the ontology/glossaries are checked against the authoritative domain literature, namely, Flora of North America and Flora of China. The evaluation results suggest that more work is needed to improve the coverage and interoperability of the ontology/glossaries. More concepts need to be added to the ontology/glossaries and careful work is needed to improve the semantic consistency. The method used in this paper to evaluate the ontology/glossaries can be used to propose new candidate concepts from the domain literature and suggest appropriate definitions.
    Date
    1. 6.2010 9:55:22
  18. Baião Salgado Silva, G.; Lima, G.Â. Borém de Oliveira: Using topic maps in establishing compatibility of semantically structured hypertext contents (2012) 0.03
    0.028412666 = product of:
      0.042618997 = sum of:
        0.025438042 = weight(_text_:based in 633) [ClassicSimilarity], result of:
          0.025438042 = score(doc=633,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.16644597 = fieldWeight in 633, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=633)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 633) [ClassicSimilarity], result of:
              0.034361906 = score(doc=633,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Considering the characteristics of hypertext systems and problems such as cognitive overload and the disorientation of users, this project studies subject hypertext documents that have undergone conceptual structuring using facets for content representation and improvement of information retrieval during navigation. The main objective was to assess the possibility of the application of topic map technology for automating the compatibilization process of these structures. For this purpose, two dissertations from the UFMG Information Science Post-Graduation Program were adopted as samples. Both dissertations had been duly analyzed and structured on the MHTX (Hypertextual Map) prototype database. The faceted structures of both dissertations, which had been represented in conceptual maps, were then converted into topic maps. It was then possible to use the merge property of the topic maps to promote the semantic interrelationship between the maps and, consequently, between the hypertextual information resources proper. The merge results were then analyzed in the light of theories dealing with the compatibilization of languages developed within the realm of information technology and librarianship from the 1960s on. The main goals accomplished were: (a) the detailed conceptualization of the merge process of the topic maps, considering the possible compatibilization levels and the applicability of this technology in the integration of faceted structures; and (b) the production of a detailed sequence of steps that may be used in the implementation of topic maps based on faceted structures.
    Date
    22. 2.2013 11:39:23
  19. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.03
    0.028412666 = product of:
      0.042618997 = sum of:
        0.025438042 = weight(_text_:based in 4553) [ClassicSimilarity], result of:
          0.025438042 = score(doc=4553,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.16644597 = fieldWeight in 4553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.034361906 = score(doc=4553,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  20. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.03
    0.028349748 = product of:
      0.04252462 = sum of:
        0.028779859 = weight(_text_:based in 1634) [ClassicSimilarity], result of:
          0.028779859 = score(doc=1634,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.18831211 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.013744762 = product of:
          0.027489524 = sum of:
            0.027489524 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.027489524 = score(doc=1634,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22

Years

Languages

  • e 232
  • d 14
  • f 1
  • pt 1
  • sp 1
  • More… Less…

Types

  • a 194
  • el 66
  • x 14
  • m 12
  • s 5
  • n 4
  • p 2
  • A 1
  • EL 1
  • r 1
  • More… Less…

Subjects