Search (5 results, page 1 of 1)

  • × type_ss:"el"
  • × type_ss:"r"
  1. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.02
    0.01754618 = product of:
      0.03509236 = sum of:
        0.03509236 = product of:
          0.07018472 = sum of:
            0.07018472 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.07018472 = score(doc=5576,freq=2.0), product of:
                0.1814022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05180212 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13.12.2017 14:17:22
  2. Schönfelder, N.: Mittelbedarf für Open Access an ausgewählten deutschen Universitäten und Forschungseinrichtungen : Transformationsrechnung (2019) 0.01
    0.0132999765 = product of:
      0.026599953 = sum of:
        0.026599953 = product of:
          0.053199906 = sum of:
            0.053199906 = weight(_text_:n in 5427) [ClassicSimilarity], result of:
              0.053199906 = score(doc=5427,freq=2.0), product of:
                0.22335295 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.05180212 = queryNorm
                0.23818761 = fieldWeight in 5427, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  3. Multilingual information management : current levels and future abilities. A report Commissioned by the US National Science Foundation and also delivered to the European Commission's Language Engineering Office and the US Defense Advanced Research Projects Agency, April 1999 (1999) 0.01
    0.010639981 = product of:
      0.021279963 = sum of:
        0.021279963 = product of:
          0.042559925 = sum of:
            0.042559925 = weight(_text_:n in 6068) [ClassicSimilarity], result of:
              0.042559925 = score(doc=6068,freq=2.0), product of:
                0.22335295 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.05180212 = queryNorm
                0.19055009 = fieldWeight in 6068, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6068)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the past 50 years, a variety of language-related capabilities has been developed in machine translation, information retrieval, speech recognition, text summarization, and so on. These applications rest upon a set of core techniques such as language modeling, information extraction, parsing, generation, and multimedia planning and integration; and they involve methods using statistics, rules, grammars, lexicons, ontologies, training techniques, and so on. It is a puzzling fact that although all of this work deals with language in some form or other, the major applications have each developed a separate research field. For example, there is no reason why speech recognition techniques involving n-grams and hidden Markov models could not have been used in machine translation 15 years earlier than they were, or why some of the lexical and semantic insights from the subarea called Computational Linguistics are still not used in information retrieval.
  4. Förderung von Informationsinfrastrukturen für die Wissenschaft : Ein Positionspapier der Deutschen Forschungsgemeinschaft (2018) 0.01
    0.00877309 = product of:
      0.01754618 = sum of:
        0.01754618 = product of:
          0.03509236 = sum of:
            0.03509236 = weight(_text_:22 in 4178) [ClassicSimilarity], result of:
              0.03509236 = score(doc=4178,freq=2.0), product of:
                0.1814022 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05180212 = queryNorm
                0.19345059 = fieldWeight in 4178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4178)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2018 17:30:43
  5. Babeu, A.: Building a "FRBR-inspired" catalog : the Perseus digital library experience (2008) 0.01
    0.0059473887 = product of:
      0.011894777 = sum of:
        0.011894777 = product of:
          0.04757911 = sum of:
            0.04757911 = weight(_text_:authors in 2429) [ClassicSimilarity], result of:
              0.04757911 = score(doc=2429,freq=2.0), product of:
                0.23615624 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05180212 = queryNorm
                0.20147301 = fieldWeight in 2429, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2429)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Our catalog should not be called a FRBR catalog perhaps, but instead a "FRBR Inspired catalog." As such our main goal has been "practical findability," we are seeking to support the four identified user tasks of the FRBR model, or to "Search, Identify, Select, and Obtain," rather than to create a FRBR catalog, per se. By encoding as much information as possible in the MODS and MADS records we have created, we believe that useful searching will be supported, that by using unique identifiers for works and authors users will be able to identify that the entity they have located is the desired one, that by encoding expression level information (such as the language of the work, the translator, etc) users will be able to select which expression of a work they are interested in, and that by supplying links to different online manifestations that users will be able to obtain access to a digital copy of a work. This white paper will discuss previous and current efforts by the Perseus Project in creating a FRBRized catalog, including the cataloging workflow, lessons learned during the process and will also seek to place this work in the larger context of research regarding FRBR, cataloging, Library 2.0 and the Semantic Web, and the growing importance of the FRBR model in the face of growing million book digital libraries.