Search (11 results, page 1 of 1)

  • × author_ss:"White, H.D."
  • × theme_ss:"Informetrie"
  1. White, H.D.; McCain, W.: Bibliometrics (1989) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 341) [ClassicSimilarity], result of:
              0.0108246 = score(doc=341,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=341)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  2. White, H.D.: Pathfinder networks and author cocitation analysis : a remapping of paradigmatic information scientists (2003) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1459) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1459,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1459, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1459)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In their 1998 article "Visualizing a discipline: An author cocitation analysis of information science, 1972-1995," White and McCain used multidimensional scaling, hierarchical clustering, and factor analysis to display the specialty groupings of 120 highly-cited ("paradigmatic") information scientists. These statistical techniques are traditional in author cocitation analysis (ACA). It is shown here that a newer technique, Pathfinder Networks (PFNETs), has considerable advantages for ACA. In PFNETs, nodes represent authors, and explicit links represent weighted paths between nodes, the weights in this case being cocitation counts. The links can be drawn to exclude all but the single highest counts for author pairs, which reduces a network of authors to only the most salient relationships. When these are mapped, dominant authors can be defined as those with relatively many links to other authors (i.e., high degree centrality). Links between authors and dominant authors define specialties, and links between dominant authors connect specialties into a discipline. Maps are made with one rather than several computer routines and in one rather than many computer passes. Also, PFNETs can, and should, be generated from matrices of raw counts rather than Pearson correlations, which removes a computational step associated with traditional ACA. White and McCain's raw data from 1998 are remapped as a PFNET. It is shown that the specialty groupings correspond closely to those seen in the factor analysis of the 1998 article. Because PFNETs are fast to compute, they are used in AuthorLink, a new Web-based system that creates live interfaces for cocited author retrieval an the fly.
    Type
    a
  3. White, H.D.: Bibliometric overview of information science (2009) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 3753) [ClassicSimilarity], result of:
              0.009374379 = score(doc=3753,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 3753, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3753)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This entry presents an account of the core concerns of information science through such means as definitional sketches, identification of themes, historical notes, and bibliometric evidence, including a citation-based map of 121 prominent information scientists of the twentieth century. The attempt throughout is to give concrete and pithy descriptions, to provide numerous specific examples, and to take a critical view of certain received language and ideas in library and information science.
    Type
    a
  4. White, H.D.: Author cocitation analysis and pearson's r (2003) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 2119) [ClassicSimilarity], result of:
              0.00894975 = score(doc=2119,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 2119, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2119)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In their article "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Ahlgren, Jarneving, and Rousseau fault traditional author cocitation analysis (ACA) for using Pearson's r as a measure of similarity between authors because it fails two tests of stability of measurement. The instabilities arise when rs are recalculated after a first coherent group of authors has been augmented by a second coherent group with whom the first has little or no cocitation. However, AJ&R neither cluster nor map their data to demonstrate how fluctuations in rs will mislead the analyst, and the problem they pose is remote from both theory and practice in traditional ACA. By entering their own rs into multidimensional scaling and clustering routines, I show that, despite r's fluctuations, clusters based an it are much the same for the combined groups as for the separate groups. The combined groups when mapped appear as polarized clumps of points in two-dimensional space, confirming that differences between the groups have become much more important than differences within the groups-an accurate portrayal of what has happened to the data. Moreover, r produces clusters and maps very like those based an other coefficients that AJ&R mention as possible replacements, such as a cosine similarity measure or a chi square dissimilarity measure. Thus, r performs well enough for the purposes of ACA. Accordingly, I argue that qualitative information revealing why authors are cocited is more important than the cautions proposed in the AJ&R critique. I include notes an topics such as handling the diagonal in author cocitation matrices, lognormalizing data, and testing r for significance.
    Type
    a
  5. White, H.D.; Boell, S.K.; Yu, H.; Davis, M.; Wilson, C.S.; Cole, F.T.H.: Libcitations : a measure for comparative assessment of book publications in the humanities and social sciences (2009) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 2846) [ClassicSimilarity], result of:
              0.00894975 = score(doc=2846,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 2846, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2846)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Bibliometric measures for evaluating research units in the book-oriented humanities and social sciences are underdeveloped relative to those available for journal-oriented science and technology. We therefore present a new measure designed for book-oriented fields: the libcitation count. This is a count of the libraries holding a given book, as reported in a national or international union catalog. As librarians decide what to acquire for the audiences they serve, they jointly constitute an instrument for gauging the cultural impact of books. Their decisions are informed by knowledge not only of audiences but also of the book world (e.g., the reputations of authors and the prestige of publishers). From libcitation counts, measures can be derived for comparing research units. Here, we imagine a match-up between the departments of history, philosophy, and political science at the University of New South Wales and the University of Sydney in Australia. We chose the 12 books from each department that had the highest libcitation counts in the Libraries Australia union catalog during 2000 to 2006. We present each book's raw libcitation count, its rank within its Library of Congress (LC) class, and its LC-class normalized libcitation score. The latter is patterned on the item-oriented field normalized citation score used in evaluative bibliometrics. Summary statistics based on these measures allow the departments to be compared for cultural impact. Our work has implications for programs such as Excellence in Research for Australia and the Research Assessment Exercise in the United Kingdom. It also has implications for data mining in OCLC's WorldCat.
    Type
    a
  6. White, H.D.; Zuccala, A.A.: Libcitations, worldcat, cultural impact, and fame (2018) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 4578) [ClassicSimilarity], result of:
              0.008285859 = score(doc=4578,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 4578, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4578)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Just as citations to a book can be counted, so can that book's libcitations-the number of libraries in a consortium that hold it. These holdings counts per title can be obtained from the consortium's union catalog, such as OCLC's WorldCat. Librarians seeking to serve their customers well must be attuned to various kinds of merit in books. The result in WorldCat is a great variation in the libcitations particular books receive. The higher a title's count (or percentile), the more famous it is-either absolutely or within a subject class. Degree of fame also indicates cultural impact, allowing that further documentation of impact may be needed. Using WorldCat data, we illustrate high, medium, and low degrees of fame with 170 titles published during 1990-1995 or 2001-2006 and spanning the 10 main Dewey classes. We use their total libcitation counts or their counts from members of the Association of Research Libraries, or both, as of late 2011. Our analysis of their fame draws on the recognizability of their authors, the extent to which they and their authors are covered by Wikipedia, and whether they have movie or TV versions. Ordinal scales based on Wikipedia coverage and on libcitation counts are very significantly associated.
    Type
    a
  7. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1080) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1080,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1080, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
    Type
    a
  8. White, H.D.; McCain, K.W.: Visualizing a discipline : an author co-citation analysis of information science, 1972-1995 (1998) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 5020) [ClassicSimilarity], result of:
              0.007654148 = score(doc=5020,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 5020, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5020)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. White, H.D.: Authors as citers over time (2001) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 5581) [ClassicSimilarity], result of:
              0.0054123 = score(doc=5581,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 5581, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5581)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explores the tendency of authors to recite themselves and others in multiple works over time, using the insights gained to build citation theory. The set of all authors whom an author cites is defined as that author's citation identity. The study explains how to retrieve citation identities from the Institute for Scientific Information's files on Dialog and how to deal with idiosyncrasies of these files. As the author's oeuvre grows, the identity takes the form of a core-and-scatter distribution that may be divided into authors cited only once (unicitations) and authors cited at least twice (recitations). The latter group, especially those recited most frequently, are interpretable as symbols of a citer's main substantive concerns. As illustrated by the top recitees of eight information scientists, identities are intelligible, individualized, and wide-ranging. They are ego-centered without being egotistical. They are often affected by social ties between citers and citees, but the universal motivator seems to be the perceived relevance of the citees' works. Citing styles in identities differ: "scientific-paper style" authors recite heavily, adding to core; "bibliographic-essay style" authors are heavy on unicitations, adding to scatter; "literature-review style" authors do both at once. Identities distill aspects of citers' intellectual lives, such as orienting figures, interdisciplinary interests, bidisciplinary careers, and conduct in controversies. They can also be related to past schemes for classifying citations in categories such as positive-negative and perfunctory- organic; indeed, one author's frequent recitation of another, whether positive or negative, may be the readiest indicator of an organic relation between them. The shape of the core-and-scatter distribution of names in identities can be explained by the principle of least effort. Citers economize on effort by frequently reciting only a relatively small core of names in their identities. They also economize by frequent use of perfunctory citations, which require relatively little context, and infrequent use of negative citations, which require contexts more laborious to set
    Type
    a
  10. White, H.D.; Wellman, B.; Nazer, N.: Does Citation Reflect Social Structure? : Longitudinal Evidence From the "Globenet" Interdisciplinary Research Group (2004) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 2095) [ClassicSimilarity], result of:
              0.0054123 = score(doc=2095,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 2095, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many authors have posited a social component in citation, the consensus being that the citers and citees often have interpersonal as well as intellectual ties. Evidence for this belief has been rather meager, however, in part because social networks researchers have lacked bibliometric data (e.g., pairwise citation counts from online databases), and citation analysts have lacked sociometric data (e.g., pairwise measures of acquaintanceship). In 1997 Nazer extensively measured personal relationships and communication behaviors in what we call "Globenet," an international group of 16 researchers from seven disciplines that was established in 1993 to study human development. Since Globenet's membership is known, it was possible during 2002 to obtain citation records for all members in databases of the Institute for Scientific Information. This permitted examination of how members cited each other (intercited) in journal articles over the past three decades and in a 1999 book to which they all contributed. It was also possible to explore links between the intercitation data and the social and communication data. Using network-analytic techniques, we look at the growth of intercitation over time, the extent to which it follows disciplinary or interdisciplinary lines, whether it covaries with degrees of acquaintanceship, whether it reflects Globenet's organizational structure, whether it is associated with particular in-group communication patterns, and whether it is related to the cocitation of Globenet members. Results show cocitation to be a powerful predictor of intercitation in the journal articles, while being an editor or co-author is an important predictor in the book. Intellectual ties based an shared content did better as predictors than content-neutral social ties like friendship. However, interciters in Globenet communicated more than did noninterciters.
    Type
    a
  11. White, H.D.: Citation analysis : history (2009) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3763) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3763,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3763)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    References from publications are at the same time citations to other publications. This entry introduces some of the practical uses of citation data in science and scholarship. At the individual level citations identify and permit the retrieval of specific editions of works, while also suggesting their subject matter, authority, and age. Through citation indexes, retrievals may include not only the earlier items referred to by a given work, but also the later items that cite that given work in turn. Some technical notes on retrieval are included here. Counts of citations received over time, and measures derived from them, reveal the varying impacts of works, authors, journals, organizations, and countries. This has obvious implications for the evaluation of, e.g., library collections, academics, research teams, and science policies. When treated as linkages between pairs of publications, references and citations reveal intellectual ties. Several kinds of links have been defined, such as cocitation, bibliographic coupling, and intercitation. In the aggregate, these links form networks that compactly suggest the intellectual histories of research specialties and disciplines, especially when the networks are visualized through mapping software. Citation analysis is of course not without critics, who have long pointed out imperfections in the data or in analytical techniques. However, the criticisms have generally been met by strong counterarguments from proponents.
    Type
    a