Search (13 results, page 1 of 1)

  • × author_ss:"Bornmann, L."
  1. Bornmann, L.; Mutz, R.; Daniel, H.D.: Do we need the h index and its variants in addition to standard bibliometric measures? (2009) 0.02
    0.023835853 = product of:
      0.047671705 = sum of:
        0.047671705 = product of:
          0.09534341 = sum of:
            0.09534341 = weight(_text_:e.g in 2861) [ClassicSimilarity], result of:
              0.09534341 = score(doc=2861,freq=4.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40756583 = fieldWeight in 2861, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this study, we investigate whether there is a need for the h index and its variants in addition to standard bibliometric measures (SBMs). Results from our recent study (L. Bornmann, R. Mutz, & H.-D. Daniel, 2008) have indicated that there are two types of indices: One type of indices (e.g., h index) describes the most productive core of a scientist's output and informs about the number of papers in the core. The other type of indices (e.g., a index) depicts the impact of the papers in the core. In evaluative bibliometric studies, the two dimensions quantity and quality of output are usually assessed using the SBMs number of publications (for the quantity dimension) and total citation counts (for the impact dimension). We additionally included the SBMs into the factor analysis. The results of the newly calculated analysis indicate that there is a high intercorrelation between number of publications and the indices that load substantially on the factor Quantity of the Productive Core as well as between total citation counts and the indices that load substantially on the factor Impact of the Productive Core. The high-loading indices and SBMs within one performance dimension could be called redundant in empirical application, as high intercorrelations between different indicators are a sign for measuring something similar (or the same). Based on our findings, we propose the use of any pair of indicators (one relating to the number of papers in a researcher's productive core and one relating to the impact of these core papers) as a meaningful approach for comparing scientists.
  2. Bornmann, L.: What is societal impact of research and how can it be assessed? : a literature survey (2013) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 606) [ClassicSimilarity], result of:
              0.08090157 = score(doc=606,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 606, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since the 1990s, the scope of research evaluations becomes broader as the societal products (outputs), societal use (societal references), and societal benefits (changes in society) of research come into scope. Society can reap the benefits of successful research studies only if the results are converted into marketable and consumable products (e.g., medicaments, diagnostic tools, machines, and devices) or services. A series of different names have been introduced which refer to the societal impact of research: third stream activities, societal benefits, societal quality, usefulness, public values, knowledge transfer, and societal relevance. What most of these names are concerned with is the assessment of social, cultural, environmental, and economic returns (impact and effects) from results (research output) or products (research outcome) of publicly funded research. This review intends to present existing research on and practices employed in the assessment of societal impact in the form of a literature survey. The objective is for this review to serve as a basis for the development of robust and reliable methods of societal impact measurement.
  3. Bornmann, L.; Haunschild, R.: Overlay maps based on Mendeley data : the use of altmetrics for readership networks (2016) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 3230) [ClassicSimilarity], result of:
              0.08090157 = score(doc=3230,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 3230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Visualization of scientific results using networks has become popular in scientometric research. We provide base maps for Mendeley reader count data using the publication year 2012 from the Web of Science data. Example networks are shown and explained. The reader can use our base maps to visualize other results with the VOSViewer. The proposed overlay maps are able to show the impact of publications in terms of readership data. The advantage of using our base maps is that it is not necessary for the user to produce a network based on all data (e.g., from 1 year), but can collect the Mendeley data for a single institution (or journals, topics) and can match them with our already produced information. Generation of such large-scale networks is still a demanding task despite the available computer power and digital data availability. Therefore, it is very useful to have base maps and create the network with the overlay technique.
  4. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.0729057 = score(doc=1239,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    18. 3.2014 19:13:22
  5. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 4919) [ClassicSimilarity], result of:
              0.06741798 = score(doc=4919,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 4919, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  6. Bornmann, L.; Marx, W.: ¬The Anna Karenina principle : a way of thinking about success in science (2012) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 449) [ClassicSimilarity], result of:
              0.06741798 = score(doc=449,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 449, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=449)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The first sentence of Leo Tolstoy's (1875-1877/2001) novel Anna Karenina is: "Happy families are all alike; every unhappy family is unhappy in its own way." Here, Tolstoy means that for a family to be happy, several key aspects must be given (e.g., good health of all family members, acceptable financial security, and mutual affection). If there is a deficiency in any one or more of these key aspects, the family will be unhappy. In this article, we introduce the Anna Karenina principle as a way of thinking about success in science in three central areas in (modern) science: (a) peer review of research grant proposals and manuscripts (money and journal space as scarce resources), (b) citation of publications (reception as a scarce resource), and (c) new scientific discoveries (recognition as a scarce resource). If resources are scarce at the highly competitive research front (journal space, funds, reception, and recognition), there can be success only when several key prerequisites for the allocation of the resources are fulfilled. If any one of these prerequisites is not fulfilled, the grant proposal, manuscript submission, the published paper, or the discovery will not be successful.
  7. Mutz, R.; Bornmann, L.; Daniel, H.-D.: Testing for the fairness and predictive validity of research funding decisions : a multilevel multiple imputation for missing data approach using ex-ante and ex-post peer evaluation data from the Austrian science fund (2015) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 2270) [ClassicSimilarity], result of:
              0.06741798 = score(doc=2270,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 2270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is essential for research funding organizations to ensure both the validity and fairness of the grant approval procedure. The ex-ante peer evaluation (EXANTE) of N?=?8,496 grant applications submitted to the Austrian Science Fund from 1999 to 2009 was statistically analyzed. For 1,689 funded research projects an ex-post peer evaluation (EXPOST) was also available; for the rest of the grant applications a multilevel missing data imputation approach was used to consider verification bias for the first time in peer-review research. Without imputation, the predictive validity of EXANTE was low (r?=?.26) but underestimated due to verification bias, and with imputation it was r?=?.49. That is, the decision-making procedure is capable of selecting the best research proposals for funding. In the EXANTE there were several potential biases (e.g., gender). With respect to the EXPOST there was only one real bias (discipline-specific and year-specific differential prediction). The novelty of this contribution is, first, the combining of theoretical concepts of validity and fairness with a missing data imputation approach to correct for verification bias and, second, multilevel modeling to test peer review-based funding decisions for both validity and fairness in terms of potential and real biases.
  8. Bornmann, L.: How much does the expected number of citations for a publication change if it contains the address of a specific scientific institute? : a new approach for the analysis of citation data on the institutional level based on regression models (2016) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 3095) [ClassicSimilarity], result of:
              0.06741798 = score(doc=3095,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 3095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation data for institutes are generally provided as numbers of citations or as relative citation rates (as, for example, in the Leiden Ranking). These numbers can then be compared between the institutes. This study aims to present a new approach for the evaluation of citation data at the institutional level, based on regression models. As example data, the study includes all articles and reviews from the Web of Science for the publication year 2003 (n?=?886,416 papers). The study is based on an in-house database of the Max Planck Society. The study investigates how much the expected number of citations for a publication changes if it contains the address of an institute. The calculation of the expected values allows, on the one hand, investigating how the citation impact of the papers of an institute appears in comparison with the total of all papers. On the other hand, the expected values for several institutes can be compared with one another or with a set of randomly selected publications. Besides the institutes, the regression models include factors which can be assumed to have a general influence on citation counts (e.g., the number of authors).
  9. Bornmann, L.: Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? : an analysis based on data from F1000Prime and normalized citation scores (2017) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 3539) [ClassicSimilarity], result of:
              0.06741798 = score(doc=3539,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 3539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3539)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, the relationship of collaboration among scientists and the citation impact of papers have been frequently investigated. Most of the studies show that the two variables are closely related: An increasing collaboration activity (measured in terms of number of authors, number of affiliations, and number of countries) is associated with an increased citation impact. However, it is not clear whether the increased citation impact is based on the higher quality of papers that profit from more than one scientist giving expert input or other (citation-specific) factors. Thus, the current study addresses this question by using two comprehensive data sets with publications (in the biomedical area) including quality assessments by experts (F1000Prime member scores) and citation data for the publications. The study is based on more than 15,000 papers. Robust regression models are used to investigate the relationship between number of authors, number of affiliations, and number of countries, respectively, and citation impact-controlling for the papers' quality (measured by F1000Prime expert ratings). The results point out that the effect of collaboration activities on impact is largely independent of the papers' quality. The citation advantage is apparently not quality related; citation-specific factors (e.g., self-citations) seem to be important here.
  10. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.0486038 = score(doc=1431,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 8.2014 17:05:18
  11. Bornmann, L.: How to analyze percentile citation impact data meaningfully in bibliometrics : the statistical analysis of distributions, percentile rank classes, and top-cited papers (2013) 0.01
    0.009113212 = product of:
      0.018226424 = sum of:
        0.018226424 = product of:
          0.03645285 = sum of:
            0.03645285 = weight(_text_:22 in 656) [ClassicSimilarity], result of:
              0.03645285 = score(doc=656,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.23214069 = fieldWeight in 656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=656)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2013 19:44:17
  12. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.01
    0.009113212 = product of:
      0.018226424 = sum of:
        0.018226424 = product of:
          0.03645285 = sum of:
            0.03645285 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.03645285 = score(doc=4681,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8. 1.2019 18:22:45
  13. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.01
    0.0075943437 = product of:
      0.0151886875 = sum of:
        0.0151886875 = product of:
          0.030377375 = sum of:
            0.030377375 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.030377375 = score(doc=4186,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 12:51:07