Search (14 results, page 1 of 1)

  • × author_ss:"Dahlberg, I."
  1. De Luca, E.W.; Dahlberg, I.: Including knowledge domains from the ICC into the multilingual lexical linked data cloud (2014) 0.07
    0.06915175 = product of:
      0.1383035 = sum of:
        0.1383035 = sum of:
          0.09534341 = weight(_text_:e.g in 1493) [ClassicSimilarity], result of:
            0.09534341 = score(doc=1493,freq=4.0), product of:
              0.23393378 = queryWeight, product of:
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.044842023 = queryNorm
              0.40756583 = fieldWeight in 1493, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.2168427 = idf(docFreq=651, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1493)
          0.042960096 = weight(_text_:22 in 1493) [ClassicSimilarity], result of:
            0.042960096 = score(doc=1493,freq=4.0), product of:
              0.15702912 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044842023 = queryNorm
              0.27358043 = fieldWeight in 1493, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1493)
      0.5 = coord(1/2)
    
    Abstract
    A lot of information that is already available on the Web, or retrieved from local information systems and social networks is structured in data silos that are not semantically related. Semantic technologies make it emerge that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g. triplify), or querying (e.g. D2R) is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. In this paper, we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different perspectives. We combine the existing work done on knowledge domains (based on the Information Coding Classification) within the Multilingual Lexical Linked Data Cloud (based on the RDF/OWL EurowordNet and the related integrated lexical resources (MultiWordNet, EuroWordNet, MEMODATA Lexicon, Hamburg Methaphor DB).
    Date
    22. 9.2014 19:01:18
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Dahlberg, I.: Normung und Klassifikation (1978) 0.03
    0.030377375 = product of:
      0.06075475 = sum of:
        0.06075475 = product of:
          0.1215095 = sum of:
            0.1215095 = weight(_text_:22 in 1612) [ClassicSimilarity], result of:
              0.1215095 = score(doc=1612,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.77380234 = fieldWeight in 1612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1612)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    DK-Mitteilungen. 22(1978) Nr.5/6, S.13-18
  3. Dahlberg, I.: Kolloquium Einheitsklassifikation (1975) 0.03
    0.030377375 = product of:
      0.06075475 = sum of:
        0.06075475 = product of:
          0.1215095 = sum of:
            0.1215095 = weight(_text_:22 in 1625) [ClassicSimilarity], result of:
              0.1215095 = score(doc=1625,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.77380234 = fieldWeight in 1625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1625)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 26(1975), S.22-25
  4. Dahlberg, I.: Conceptual definitions for INTERCONCEPT (1981) 0.03
    0.030377375 = product of:
      0.06075475 = sum of:
        0.06075475 = product of:
          0.1215095 = sum of:
            0.1215095 = weight(_text_:22 in 1630) [ClassicSimilarity], result of:
              0.1215095 = score(doc=1630,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.77380234 = fieldWeight in 1630, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1630)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    International classification. 8(1981), S.16-22
  5. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.02
    0.023835853 = product of:
      0.047671705 = sum of:
        0.047671705 = product of:
          0.09534341 = sum of:
            0.09534341 = weight(_text_:e.g in 4824) [ClassicSimilarity], result of:
              0.09534341 = score(doc=4824,freq=4.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40756583 = fieldWeight in 4824, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
  6. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.02
    0.021264162 = product of:
      0.042528324 = sum of:
        0.042528324 = product of:
          0.08505665 = sum of:
            0.08505665 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.08505665 = score(doc=880,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.9-22
  7. Dahlberg, I.: Library catalogs in the Internet : switching for future subject access (1996) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 5171) [ClassicSimilarity], result of:
              0.08090157 = score(doc=5171,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A multitude of library catalogs are now being entered into the Internet. Their differing classification and subject headings systems used for subject access call for a switching system, a black box to facilitate the location of subject fields and their subjects in these systems. The principles on which such a switching system must be built in order to provide the necessary insight, surveyability, reproducebility and ease of concept combinability (e.g. in cases of interdisciplinary subjects) are outlined and compared with the BSO which hance once been established by the FID in order to serve a switching purpose. The advantages of using the Information Coding Classification (ICC) as a switching system in the Internet are demonstrated, likewise the methodology needed to establish the necessary correlation between library classification systems (and if possible also subject heading systems and thesauri) and the ICC. Finally some organizational implications for creating a switching for 6 universal systems in use are described
  8. Dahlberg, I.: Classification structure principles : Investigations, experiences, conclusions (1998) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 47) [ClassicSimilarity], result of:
              0.08090157 = score(doc=47,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 47, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=47)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For the purpose of establishing compatibility between the major universal classification systems in use, their structure principles were investigated and crucial points of difficulty for this undertaking were looked for, in order to relate the guiding classes, e.g. of the DDC, UDC, LCC, BC, and CC, to the subject groups of the ICC. With the help of a matrix into whose fields all subject groups of the ICC were inserted, it was not difficult at all to enter the notations of the universal classification systems mentioned. However, differences in terms of level of subdivision were found, as well as differences of occurrences. Most, though not all, of the fields of the ICC matrix could be completely filled with the corresponding notations of the other systems. Through this matrix, a first table of some 81 equivalences was established on which further work regarding the next levels of subject fields can be based
  9. Dahlberg, I.: ¬The terminology of subject-fields (1975) 0.02
    0.020225393 = product of:
      0.040450785 = sum of:
        0.040450785 = product of:
          0.08090157 = sum of:
            0.08090157 = weight(_text_:e.g in 2103) [ClassicSimilarity], result of:
              0.08090157 = score(doc=2103,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.34583107 = fieldWeight in 2103, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2103)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    So far terminological work has been mainly directed towards defining very special concepts. The more general ones, e.g. those denoting subject-fields have been neglected with the result that communication on this level has been seriously hampered. There exists a great number of such terms and also a growing trend for the formation of new ones. In the FRG an R&D project was started in 1972 with the collection of names of subject fields, it is intended to assemble their definitions in a dictionary and to build a general concept system by computercomparison of their characteristics as provided by their definitions. The nature of subject-fields is explained, details on the German collection are given as well as some results from a formal analysis of their concepts. It is proposed to initiate similar projects in other linguistic regions as well; this could be done under the auspices of Infoterm. Some application-possibilities for a general concept-system (e. g. a broad system of ordering) are given. The annex displays a scheme of 9 subject areas and about 90 subareas for the sorting of names of subject fields
  10. Dahlberg, I.: ¬The terminology of subject-fields (2015) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 2104) [ClassicSimilarity], result of:
              0.06741798 = score(doc=2104,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 2104, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2104)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    So far terminological work has been mainly directed towards defining very special concepts. The more general ones, e.g. those denoting subject-fields have been neglected with the result that communication on this level has been seriously hampered. There exists a great number of such terms and also a growing trend for the formation of new ones. In the FRG an R&D project was started in 1972 with the collection of names of subject fields, it is intended to assemble their definitions in a dictionary and to build a general concept system by computercomparison of their characteristics as provided by their definitions. The nature of subject-fields is explained, details on the German collection are given as well as some results from a formal analysis of their concepts. It is proposed to initiate similar projects in other linguistic regions as well; this could be done under the auspices of Infoterm. Some application-possibilities for a general concept-system (e. g. a broad system of ordering) are given. The annex displays a scheme of 9 subject areas and about 90 subareas for the sorting of names of subject fields.
  11. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.06075475 = score(doc=127,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  12. Dahlberg, I.: Begriffsarbeit in der Wissensorganisation (2010) 0.01
    0.01215095 = product of:
      0.0243019 = sum of:
        0.0243019 = product of:
          0.0486038 = sum of:
            0.0486038 = weight(_text_:22 in 3726) [ClassicSimilarity], result of:
              0.0486038 = score(doc=3726,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.30952093 = fieldWeight in 3726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3726)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  13. Luca, E.W. de; Dahlberg, I.: ¬Die Multilingual Lexical Linked Data Cloud : eine mögliche Zugangsoptimierung? (2014) 0.01
    0.009113212 = product of:
      0.018226424 = sum of:
        0.018226424 = product of:
          0.03645285 = sum of:
            0.03645285 = weight(_text_:22 in 1736) [ClassicSimilarity], result of:
              0.03645285 = score(doc=1736,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.23214069 = fieldWeight in 1736, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1736)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2014 19:00:13
  14. Dahlberg, I.: How to improve ISKO's standing : ten desiderata for knowledge organization (2011) 0.01
    0.008427247 = product of:
      0.016854495 = sum of:
        0.016854495 = product of:
          0.03370899 = sum of:
            0.03370899 = weight(_text_:e.g in 4300) [ClassicSimilarity], result of:
              0.03370899 = score(doc=4300,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.14409629 = fieldWeight in 4300, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4300)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    6. Establishment of national Knowledge Organization Institutes should be scheduled by national chapters, planned energetically and submitted to corresponding administrative authorities for support. They could be attached to research institutions, e.g., the Max-Planck or Fraunhofer Institutes in Germany or to universities. Their scope and research areas relate to the elaboration of knowledge systems of subject related concepts, according to Desideratum 1, and may be connected to training activities and KOsubject-related research work. 7. ISKO experts should not accept to be impressed by Internet and Computer Science, but should demonstrate their expertise more actively on the public plane. They should tend to take a leading part in the ISKO Secretariats and the KO Institutes, and act as consultants and informants, as well as editors of statistics and other publications. 8. All colleagues trained in the field of classification/indexing and thesauri construction and active in different countries should be identified and approached for membership in ISKO. This would have to be accomplished by the General Secretariat with the collaboration of the experts in the different secretariats of the countries, as soon as they start to work. The more members ISKO will have, the greater will be its reputation and influence. But it will also prove its professionalism by the quality of its products, especially its innovating conceptual order systems to come. 9. ISKO should-especially in view of global expansion-intensify the promotion of knowledge about its own subject area through the publications mentioned here and in further publications as deemed necessary. It should be made clear that, especially in ISKO's own publications, professional subject indexes are a sine qua non. 10. 1) Knowledge Organization, having arisen from librarianship and documentation, the contents of which has many points of contact with numerous application fields, should-although still linked up with its areas of descent-be recognized in the long run as an independent autonomous discipline to be located under the science of science, since only thereby can it fully play its role as an equal partner in all application fields; and, 2) An "at-a-first-glance knowledge order" could be implemented through the Information Coding Classification (ICC), as this system is based on an entirely new approach, namely based on general object areas, thus deviating from discipline-oriented main classes of the current main universal classification systems. It can therefore recoup by simple display on screen the hitherto lost overview of all knowledge areas and fields. On "one look", one perceives 9 object areas subdivided into 9 aspects which break down into 81 subject areas with their 729 subject fields, including further special fields. The synthesis and place of order of all knowledge becomes thus evident at a glance to everybody. Nobody would any longer be irritated by the abundance of singular apparently unrelated knowledge fields or become hesitant in his/her understanding of the world.