Search (5 results, page 1 of 1)

  • × author_ss:"Gonçalves, M.A."
  1. Cortez, E.; Silva, A.S. da; Gonçalves, M.A.; Mesquita, F.; Moura, E.S. de: ¬A flexible approach for extracting metadata from bibliographic citations (2009) 0.02
    0.023835853 = product of:
      0.047671705 = sum of:
        0.047671705 = product of:
          0.09534341 = sum of:
            0.09534341 = weight(_text_:e.g in 2848) [ClassicSimilarity], result of:
              0.09534341 = score(doc=2848,freq=4.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40756583 = fieldWeight in 2848, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2848)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we present FLUX-CiM, a novel method for extracting components (e.g., author names, article titles, venues, page numbers) from bibliographic citations. Our method does not rely on patterns encoding specific delimiters used in a particular citation style. This feature yields a high degree of automation and flexibility, and allows FLUX-CiM to extract from citations in any given format. Differently from previous methods that are based on models learned from user-driven training, our method relies on a knowledge base automatically constructed from an existing set of sample metadata records from a given field (e.g., computer science, health sciences, social sciences, etc.). These records are usually available on the Web or other public data repositories. To demonstrate the effectiveness and applicability of our proposed method, we present a series of experiments in which we apply it to extract bibliographic data from citations in articles of different fields. Results of these experiments exhibit precision and recall levels above 94% for all fields, and perfect extraction for the large majority of citations tested. In addition, in a comparison against a state-of-the-art information-extraction method, ours produced superior results without the training phase required by that method. Finally, we present a strategy for using bibliographic data resulting from the extraction process with FLUX-CiM to automatically update and expand the knowledge base of a given domain. We show that this strategy can be used to achieve good extraction results even if only a very small initial sample of bibliographic records is available for building the knowledge base.
  2. Cota, R.G.; Ferreira, A.A.; Nascimento, C.; Gonçalves, M.A.; Laender, A.H.F.: ¬An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations (2010) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 3986) [ClassicSimilarity], result of:
              0.06741798 = score(doc=3986,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 3986, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3986)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Name ambiguity in the context of bibliographic citations is a difficult problem which, despite the many efforts from the research community, still has a lot of room for improvement. In this article, we present a heuristic-based hierarchical clustering method to deal with this problem. The method successively fuses clusters of citations of similar author names based on several heuristics and similarity measures on the components of the citations (e.g., coauthor names, work title, and publication venue title). During the disambiguation task, the information about fused clusters is aggregated providing more information for the next round of fusion. In order to demonstrate the effectiveness of our method, we ran a series of experiments in two different collections extracted from real-world digital libraries and compared it, under two metrics, with four representative methods described in the literature. We present comparisons of results using each considered attribute separately (i.e., coauthor names, work title, and publication venue title) with the author name attribute and using all attributes together. These results show that our unsupervised method, when using all attributes, performs competitively against all other methods, under both metrics, loosing only in one case against a supervised method, whose result was very close to ours. Moreover, such results are achieved without the burden of any training and without using any privileged information such as knowing a priori the correct number of clusters.
  3. Melo, P.F.; Dalip, D.H.; Junior, M.M.; Gonçalves, M.A.; Benevenuto, F.: 10SENT : a stable sentiment analysis method based on the combination of off-the-shelf approaches (2019) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 4990) [ClassicSimilarity], result of:
              0.06741798 = score(doc=4990,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 4990, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4990)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Sentiment analysis has become a very important tool for analysis of social media data. There are several methods developed, covering distinct aspects of the problem and disparate strategies. However, no single technique fits well in all cases or for all data sources. Supervised approaches may be able to adapt to specific situations, but require manually labeled training, which is very cumbersome and expensive to acquire, mainly for a new application. In this context, we propose to combine several popular and effective state-of-the-practice sentiment analysis methods by means of an unsupervised bootstrapped strategy. One of our main goals is to reduce the large variability (low stability) of the unsupervised methods across different domains. The experimental results demonstrate that our combined method (aka, 10SENT) improves the effectiveness of the classification task, considering thirteen different data sets. Also, it tackles the key problem of cross-domain low stability and produces the best (or close to best) results in almost all considered contexts, without any additional costs (e.g., manual labeling). Finally, we also investigate a transfer learning approach for sentiment analysis to gather additional (unsupervised) information for the proposed approach, and we show the potential of this technique to improve our results.
  4. Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P.: ¬A general multiview framework for assessing the quality of collaboratively created content on web 2.0 (2017) 0.01
    0.0075943437 = product of:
      0.0151886875 = sum of:
        0.0151886875 = product of:
          0.030377375 = sum of:
            0.030377375 = weight(_text_:22 in 3343) [ClassicSimilarity], result of:
              0.030377375 = score(doc=3343,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.19345059 = fieldWeight in 3343, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3343)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.11.2017 13:04:22
  5. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.01
    0.0075943437 = product of:
      0.0151886875 = sum of:
        0.0151886875 = product of:
          0.030377375 = sum of:
            0.030377375 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.030377375 = score(doc=3524,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.11.2017 13:30:22