Search (55 results, page 1 of 3)

  • × theme_ss:"Suchoberflächen"
  1. Given, L.M.; Ruecker, S.; Simpson, H.; Sadler, E.; Ruskin, A.: Inclusive interface design for seniors : Image-browsing for a health information context (2007) 0.03
    0.033370197 = product of:
      0.06674039 = sum of:
        0.06674039 = product of:
          0.13348079 = sum of:
            0.13348079 = weight(_text_:e.g in 579) [ClassicSimilarity], result of:
              0.13348079 = score(doc=579,freq=4.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.57059216 = fieldWeight in 579, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=579)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explores an image-based retrieval interface for drug information, focusing on usability for a specific population - seniors. Qualitative, task-based interviews examined participants' health information behaviors and documented search strategies using an existing database (www.drugs.com) and a new prototype that uses similarity-based clustering of pill images for retrieval. Twelve participants (aged 65 and older), reflecting a diversity of backgrounds and experience with Web-based resources, located pill information using the interfaces and discussed navigational and other search preferences. Findings point to design features (e.g., image enlargement) that meet seniors' needs in the context of other health-related information-seeking strategies (e.g., contacting pharmacists).
  2. Buzydlowski, J.W.; White, H.D.; Lin, X.: Term Co-occurrence Analysis as an Interface for Digital Libraries (2002) 0.03
    0.031569093 = product of:
      0.06313819 = sum of:
        0.06313819 = product of:
          0.12627637 = sum of:
            0.12627637 = weight(_text_:22 in 1339) [ClassicSimilarity], result of:
              0.12627637 = score(doc=1339,freq=6.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.804159 = fieldWeight in 1339, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1339)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:16:22
  3. Chen, C.: Top Ten Problems in Visual Interfaces to Digital Libraries (2002) 0.03
    0.025776058 = product of:
      0.051552117 = sum of:
        0.051552117 = product of:
          0.103104234 = sum of:
            0.103104234 = weight(_text_:22 in 4840) [ClassicSimilarity], result of:
              0.103104234 = score(doc=4840,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.6565931 = fieldWeight in 4840, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4840)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:13:11
  4. Shen, R.; Wang, J.; Fox, E.A.: ¬A Lightweight Protocol between Digital Libraries and Visualization Systems (2002) 0.03
    0.025776058 = product of:
      0.051552117 = sum of:
        0.051552117 = product of:
          0.103104234 = sum of:
            0.103104234 = weight(_text_:22 in 666) [ClassicSimilarity], result of:
              0.103104234 = score(doc=666,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.6565931 = fieldWeight in 666, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=666)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:15:14
  5. Börner, K.; Chen, C.: Visual Interfaces to Digital Libraries : Motivation, Utilization, and Socio-technical Challenges (2002) 0.03
    0.025776058 = product of:
      0.051552117 = sum of:
        0.051552117 = product of:
          0.103104234 = sum of:
            0.103104234 = weight(_text_:22 in 1359) [ClassicSimilarity], result of:
              0.103104234 = score(doc=1359,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.6565931 = fieldWeight in 1359, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1359)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:20:07
  6. Christoffel, M.; Schmitt, B.: Accessing Libraries as Easy as a Game (2002) 0.03
    0.025776058 = product of:
      0.051552117 = sum of:
        0.051552117 = product of:
          0.103104234 = sum of:
            0.103104234 = weight(_text_:22 in 1361) [ClassicSimilarity], result of:
              0.103104234 = score(doc=1361,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.6565931 = fieldWeight in 1361, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1361)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:19:01
  7. Catarci, T.; Spaccapietra, S.: Visual information querying (2002) 0.02
    0.024770945 = product of:
      0.04954189 = sum of:
        0.04954189 = product of:
          0.09908378 = sum of:
            0.09908378 = weight(_text_:e.g in 4268) [ClassicSimilarity], result of:
              0.09908378 = score(doc=4268,freq=12.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.42355484 = fieldWeight in 4268, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=4268)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Computers have become our companions in many of the activities we pursue in our life. They assist us, in particular, in searching relevant information that is needed to perform a variety of tasks, from professional usage to personal entertainment. They hold this information in a huge number of heterogeneous sources, either dedicated to a specific user community (e.g., enterprise databases) or maintained for the general public (e.g., websites and digital libraries). Whereas progress in basic information technology is nowadays capable of guaranteeing effective information management, information retrieval and dissemination has become a core issue that needs further accomplishments to achieve user satisfaction. The research communities in databases, information retrieval, information visualization, and human-computer interaction have already largely investigated these domains. However, the technical environment has so dramatically evolved in recent years, inducing a parallel and very significant evolution in user habits and expectations, that new approaches are definitely needed to meet current demand. One of the most evident and significant changes is the human-computer interaction paradigm. Traditional interactions relayed an programming to express user information requirements in formal code and an textual output to convey to users the information extracted by the system. Except for professional data-intensive application frameworks, still in the hands of computer speciahsts, we have basically moved away from this pattern both in terms of expressing information requests and conveying results. The new goal is direct interaction with the final user (the person who is looking for information and is not necessarily familiar with computer technology). The key motto to achieve this is "go visual." The well-known high bandwidth of the human-vision channel allows both recognition and understanding of large quantities of information in no more than a few seconds. Thus, for instance, if the result of an information request can be organized as a visual display, or a sequence of visual displays, the information throughput is immensely superior to the one that can be achieved using textual support. User interaction becomes an iterative query-answer game that very rapidly leads to the desired final result. Conversely, the system can provide efficient visual support for easy query formulation. Displaying a visual representation of the information space, for instance, lets users directly point at the information they are looking for, without any need to be trained into the complex syntax of current query languages. Alternatively, users can navigate in the information space, following visible paths that will lead them to the targeted items. Again, thanks to the visual support, users are able to easily understand how to formulate queries and they are likely to achieve the task more rapidly and less prone to errors than with traditional textual interaction modes.
    The two facets of "going visual" are usually referred to as visual query systems, for query formulation, and information visualization, for result display. Visual Query Systems (VQSs) are defined as systems for querying databases that use a visual representation to depict the domain of interest and express related requests. VQSs provide both a language to express the queries in a visual format and a variety of functionalities to facilitate user-system interaction. As such, they are oriented toward a wide spectrum of users, especially novices who have limited computer expertise and generally ignore the inner structure of the accessed database. Information visualization, an increasingly important subdiscipline within the field of Human-Computer Interaction (HCI), focuses an visual mechanisms designed to communicate clearly to the user the structure of information and improve an the cost of accessing large data repositories. In printed form, information visualization has included the display of numerical data (e.g., bar charts, plot charts, pie charts), combinatorial relations (e.g., drawings of graphs), and geographic data (e.g., encoded maps). In addition to these "static" displays, computer-based systems, such as the Information Visualizer and Dynamic Queries, have coupled powerful visualization techniques (e.g., 3D, animation) with near real-time interactivity (i.e., the ability of the system to respond quickly to the user's direct manipulation commands). Information visualization is tightly combined with querying capabilities in some recent database-centered approaches. More opportunities for information visualization in a database environment may be found today in data mining and data warehousing applications, which typically access large data repositories. The enormous quantity of information sources an the World-Wide Web (WWW) available to users with diverse capabilities also calls for visualization techniques. In this article, we survey the main features and main proposals for visual query systems and touch upon the visualization of results mainly discussing traditional visualization forms. A discussion of modern database visualization techniques may be found elsewhere. Many related articles by Daniel Keim are available at http://www. informatik.uni-halle.de/dbs/publications.html.
  8. Järvelin, K.; Ingwersen, P.; Niemi, T.: ¬A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques (2000) 0.02
    0.023835853 = product of:
      0.047671705 = sum of:
        0.047671705 = product of:
          0.09534341 = sum of:
            0.09534341 = weight(_text_:e.g in 4545) [ClassicSimilarity], result of:
              0.09534341 = score(doc=4545,freq=4.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40756583 = fieldWeight in 4545, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4545)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article presents a novel user-oriented interface for generalised informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modelling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible and extensible. It enables end users to perform basic informetric ad hoc calculations easily and often with much less effort than in contemporary online retrieval systems. It also provides several fruitful generalisations of typical informetric measurements like impact factors. These are based on substituting traditional foci of analysis, for instance journals, by other object types, such as authors, organisations or countries. In the interface, bibliographic data are modelled as complex objects (non-first normal form relations) and terminological and citation networks involving transitive relationships are modelled as binary relations for deductive processing. The interface is flexible, because it makes it easy to switch focus between various object types for informetric calculations, e.g. from authors to institutions. Moreover, it is demonstrated that all informetric data can easily be broken down by criteria that foster advanced analysis, e.g. by years or content-bearing attributes. Such modelling allows flexible data aggregation along many dimensions. These salient features emerge from the query interface's general data restructuring and aggregation capabilities combined with transitive processing capabilities. The features are illustrated by means of sample queries and results in the article.
  9. Griffiths, J.R.; Lambert, J.S.: CD-ROM interfaces : full text databases (1995) 0.02
    0.02359629 = product of:
      0.04719258 = sum of:
        0.04719258 = product of:
          0.09438516 = sum of:
            0.09438516 = weight(_text_:e.g in 2761) [ClassicSimilarity], result of:
              0.09438516 = score(doc=2761,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40346956 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Examines the growing and diverse full text CD-ROM marketplace. Attempts to discover the extent of fragmentation within this marketplace. Discusses the conflict between the design of such CD-ROMs for end user searching and the proliferation and diversification of retrieval software which bring into question the ease of use of CD-ROMs. identifies areas of expansion in this marketplace, including the home and schools' markets and specific subject areas, e.g. law, business and commerce and news information. Suggests that it will be interesting to see which search interface survive as the markets develops
  10. Rogers, Y.: New theoretical approaches for human-computer interaction (2003) 0.02
    0.02359629 = product of:
      0.04719258 = sum of:
        0.04719258 = product of:
          0.09438516 = sum of:
            0.09438516 = weight(_text_:e.g in 4270) [ClassicSimilarity], result of:
              0.09438516 = score(doc=4270,freq=8.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40346956 = fieldWeight in 4270, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "Theory weary, theory leery, why can't I be theory cheery?" (Erickson, 2002, p. 269). The field of human-computer interaction (HCI) is rapidly expanding. Alongside the extensive technological developments that are taking place, a profusion of new theories, methods, and concerns has been imported into the field from a range of disciplines and contexts. An extensive critique of recent theoretical developments is presented here together with an overview of HCI practice. A consequence of bringing new theories into the field has been much insightful explication of HCI phenomena and also a broadening of the field's discourse. However, these theoretically based approaches have had limited impact an the practice of interaction design. This chapter discusses why this is so and suggests that different kinds of mechanisms are needed that will enable both designers and researchers to better articulate and theoretically ground the challenges facing them today. Human-computer interaction is bursting at the seams. Its mission, goals, and methods, well established in the '80s, have all greatly expanded to the point that "HCI is now effectively a boundless domain" (Barnard, May, Duke, & Duce, 2000, p. 221). Everything is in a state of flux: The theory driving research is changing, a flurry of new concepts is emerging, the domains and type of users being studied are diversifying, many of the ways of doing design are new, and much of what is being designed is significantly different. Although potentially much is to be gained from such rapid growth, the downside is an increasing lack of direction, structure, and coherence in the field. What was originally a bounded problem space with a clear focus and a small set of methods for designing computer systems that were easier and more efficient to use by a single user is now turning into a diffuse problem space with less clarity in terms of its objects of study, design foci, and investigative methods. Instead, aspirations of overcoming the Digital Divide, by providing universal accessibility, have become major concerns (e.g., Shneiderman, 2002a). The move toward greater openness in the field means that many more topics, areas, and approaches are now considered acceptable in the worlds of research and practice.
    A problem with allowing a field to expand eclectically is that it can easily lose coherence. No one really knows what its purpose is anymore or what criteria to use in assessing its contribution and value to both knowledge and practice. For example, among the many new approaches, ideas, methods, and goals now being proposed, how do we know which are acceptable, reliable, useful, and generalizable? Moreover, how do researchers and designers know which of the many tools and techniques to use when doing design and research? To be able to address these concerns, a young field in a state of flux (as is HCI) needs to take stock and begin to reflect an the changes that are happening. The purpose of this chapter is to assess and reflect an the role of theory in contemporary HCI and the extent to which it is used in design practice. Over the last ten years, a range of new theories has been imported into the field. A key question is whether such attempts have been productive in terms of "knowledge transfer." Here knowledge transfer means the translation of research findings (e.g., theory, empirical results, descriptive accounts, cognitive models) from one discipline (e.g., cognitive psychology, sociology) into another (e.g., human-computer interaction, computer supported cooperative work).
  11. Beaulieu, M.: Experiments on interfaces to support query expansion (1997) 0.02
    0.02359629 = product of:
      0.04719258 = sum of:
        0.04719258 = product of:
          0.09438516 = sum of:
            0.09438516 = weight(_text_:e.g in 4704) [ClassicSimilarity], result of:
              0.09438516 = score(doc=4704,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40346956 = fieldWeight in 4704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Focuses on the user and human-computer interaction (HCI) aspects of the research based on the Okapi text retrieval system. Describes 3 experiments using different approaches to query expansion, highlighting the relationship between the functionality of a system and different interface designs. These experiments involve both automatic and interactive query expansion, and both character based and GUI (graphical user interface) environments. The effectiveness of the search interaction for query expansion depends on resolving opposing interface and functional aspects, e.g. automatic vs. interactive query expansion, explicit vs. implicit use of a thesaurus, and document vs. query space
  12. Toms, E.G.: User-centered design of information systems (2009) 0.02
    0.02359629 = product of:
      0.04719258 = sum of:
        0.04719258 = product of:
          0.09438516 = sum of:
            0.09438516 = weight(_text_:e.g in 3900) [ClassicSimilarity], result of:
              0.09438516 = score(doc=3900,freq=2.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.40346956 = fieldWeight in 3900, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3900)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.02
    0.021480048 = product of:
      0.042960096 = sum of:
        0.042960096 = product of:
          0.08592019 = sum of:
            0.08592019 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.08592019 = score(doc=1352,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  14. Grudin, J.: Human-computer interaction (2011) 0.02
    0.021264162 = product of:
      0.042528324 = sum of:
        0.042528324 = product of:
          0.08505665 = sum of:
            0.08505665 = weight(_text_:22 in 1601) [ClassicSimilarity], result of:
              0.08505665 = score(doc=1601,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.5416616 = fieldWeight in 1601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1601)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    27.12.2014 18:54:22
  15. Poynder, R.: WinSPIRS from SilverPlatter (1994) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 8113) [ClassicSimilarity], result of:
              0.0729057 = score(doc=8113,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 8113, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8113)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 1.1999 19:32:22
  16. Gliszczynski, S. von; Kaiser, D.: GRIPS-Funktionen : GRIPS-MainMenu: Benutzerführung von Anfang an (1994) 0.02
    0.018226424 = product of:
      0.03645285 = sum of:
        0.03645285 = product of:
          0.0729057 = sum of:
            0.0729057 = weight(_text_:22 in 496) [ClassicSimilarity], result of:
              0.0729057 = score(doc=496,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.46428138 = fieldWeight in 496, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=496)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 1.1999 19:23:22
  17. Lange, M.; Sandholzer, U.; Wiegandt, B.: Neue Oberfläche und Funktionalitäten für die GBV-Datenbanken (2008) 0.02
    0.017184038 = product of:
      0.034368075 = sum of:
        0.034368075 = product of:
          0.06873615 = sum of:
            0.06873615 = weight(_text_:22 in 1849) [ClassicSimilarity], result of:
              0.06873615 = score(doc=1849,freq=4.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.4377287 = fieldWeight in 1849, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1849)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.10.2008 19:31:22
    Source
    Mitteilungsblatt der Bibliotheken in Niedersachsen und Sachsen-Anhalt. 2008, H.139, S.22-24
  18. Wenzel, A.: MIMOSA - eine einheitliche Benutzeroberfläche für CD-ROM Serien in der Patentinformation (1998) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 4146) [ClassicSimilarity], result of:
              0.06075475 = score(doc=4146,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 4146, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4146)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Information und Märkte: 50. Deutscher Dokumentartag 1998, Kongreß der Deutschen Gesellschaft für Dokumentation e.V. (DGD), Rheinische Friedrich-Wilhelms-Universität Bonn, 22.-24. September 1998. Hrsg. von Marlies Ockenfeld u. Gerhard J. Mantwill
  19. Mandl, T.; Stempfhuber, M.: Softwareergonomische Gestaltung von Wirtschaftsinformationssystemen am Beispiel von ELVIRA (1998) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 4154) [ClassicSimilarity], result of:
              0.06075475 = score(doc=4154,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4154)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Information und Märkte: 50. Deutscher Dokumentartag 1998, Kongreß der Deutschen Gesellschaft für Dokumentation e.V. (DGD), Rheinische Friedrich-Wilhelms-Universität Bonn, 22.-24. September 1998. Hrsg. von Marlies Ockenfeld u. Gerhard J. Mantwill
  20. Vaughan, M.W.; Resnick, M.L.: Search user interfaces : best practices and future visions (2006) 0.02
    0.0151886875 = product of:
      0.030377375 = sum of:
        0.030377375 = product of:
          0.06075475 = sum of:
            0.06075475 = weight(_text_:22 in 5191) [ClassicSimilarity], result of:
              0.06075475 = score(doc=5191,freq=2.0), product of:
                0.15702912 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044842023 = queryNorm
                0.38690117 = fieldWeight in 5191, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5191)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 17:37:31

Years

Languages

  • e 46
  • d 9

Types

  • a 51
  • m 4
  • s 1
  • More… Less…