Search (53 results, page 3 of 3)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.01
    0.006342702 = product of:
      0.012685404 = sum of:
        0.012685404 = product of:
          0.025370808 = sum of:
            0.025370808 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.025370808 = score(doc=3483,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.19-22
  2. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.01
    0.006342702 = product of:
      0.012685404 = sum of:
        0.012685404 = product of:
          0.025370808 = sum of:
            0.025370808 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.025370808 = score(doc=1417,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.006342702 = product of:
      0.012685404 = sum of:
        0.012685404 = product of:
          0.025370808 = sum of:
            0.025370808 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.025370808 = score(doc=1418,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.01
    0.006342702 = product of:
      0.012685404 = sum of:
        0.012685404 = product of:
          0.025370808 = sum of:
            0.025370808 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.025370808 = score(doc=1778,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8. 4.2015 16:22:13
  5. Green, R.: Facet analysis and semantic frames (2017) 0.01
    0.0056677163 = product of:
      0.0113354325 = sum of:
        0.0113354325 = product of:
          0.022670865 = sum of:
            0.022670865 = weight(_text_:r in 3849) [ClassicSimilarity], result of:
              0.022670865 = score(doc=3849,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.18286766 = fieldWeight in 3849, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3849)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  6. Zarrad, R.; Doggaz, N.; Zagrouba, E.: Wikipedia HTML structure analysis for ontology construction (2018) 0.01
    0.0056677163 = product of:
      0.0113354325 = sum of:
        0.0113354325 = product of:
          0.022670865 = sum of:
            0.022670865 = weight(_text_:r in 4302) [ClassicSimilarity], result of:
              0.022670865 = score(doc=4302,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.18286766 = fieldWeight in 4302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4302)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  7. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.01
    0.0050741616 = product of:
      0.010148323 = sum of:
        0.010148323 = product of:
          0.020296646 = sum of:
            0.020296646 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.020296646 = score(doc=2763,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    12. 9.2004 17:22:35
  8. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.01
    0.0050741616 = product of:
      0.010148323 = sum of:
        0.010148323 = product of:
          0.020296646 = sum of:
            0.020296646 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
              0.020296646 = score(doc=2346,freq=2.0), product of:
                0.13114879 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.037451506 = queryNorm
                0.15476047 = fieldWeight in 2346, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2346)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    7.11.2008 15:22:04
  9. Bliss, H.E.: ¬A bibliographic classification : principles and definitions (1985) 0.00
    0.004534173 = product of:
      0.009068346 = sum of:
        0.009068346 = product of:
          0.018136691 = sum of:
            0.018136691 = weight(_text_:r in 3621) [ClassicSimilarity], result of:
              0.018136691 = score(doc=3621,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.14629413 = fieldWeight in 3621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Henry Evelyn Bliss (1870-1955) devoted several decades of his life to the study of classification and the development of the Bibliographic Classification scheme while serving as a librarian in the College of the City of New York. In the course of the development of the Bibliographic Classification, Bliss developed a body of classification theory published in a number of articles and books, among which the best known are The Organization of Knowledge and the System of the Sciences (1929), Organization of Knowledge in Libraries and the Subject Approach to Books (1933; 2nd ed., 1939), and the lengthy preface to A Bibliographic Classification (Volumes 1-2, 1940; 2nd ed., 1952). In developing the Bibliographic Classification, Bliss carefully established its philosophical and theoretical basis, more so than was attempted by the makers of other classification schemes, with the possible exception of S. R. Ranganathan (q.v.) and his Colon Classification. The basic principles established by Bliss for the Bibliographic Classification are: consensus, collocation of related subjects, subordination of special to general and gradation in specialty, and the relativity of classes and of classification (hence alternative location and alternative treatment). In the preface to the schedules of A Bibliographic Classification, Bliss spells out the general principles of classification as weIl as principles specifically related to his scheme. The first volume of the schedules appeared in 1940. In 1952, he issued a second edition of the volume with a rewritten preface, from which the following excerpt is taken, and with the addition of a "Concise Synopsis," which is also included here to illustrate the principles of classificatory structure. In the excerpt reprinted below, Bliss discusses the correlation between classes, concepts, and terms, as weIl as the hierarchical structure basic to his classification scheme. In his discussion of cross-classification, Bliss recognizes the "polydimensional" nature of classification and the difficulties inherent in the two-dimensional approach which is characteristic of linear classification. This is one of the earliest works in which the multidimensional nature of classification is recognized. The Bibliographic Classification did not meet with great success in the United States because the Dewey Decimal Classification and the Library of Congress Classification were already weIl ensconced in American libraries by then. Nonetheless, it attracted considerable attention in the British Commonwealth and elsewhere in the world. A committee was formed in Britain which later became the Bliss Classification Association. A faceted edition of the scheme has been in preparation under the direction of J. Mills and V. Broughton. Several parts of this new edition, entitled Bliss Bibliographic Classification, have been published.
  10. Vickery, B.C.: Systematic subject indexing (1985) 0.00
    0.004534173 = product of:
      0.009068346 = sum of:
        0.009068346 = product of:
          0.018136691 = sum of:
            0.018136691 = weight(_text_:r in 3636) [ClassicSimilarity], result of:
              0.018136691 = score(doc=3636,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.14629413 = fieldWeight in 3636, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3636)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Brian C. Vickery, Director and Professor, School of Library, Archive and Information Studies, University College, London, is a prolific writer on classification and information retrieval. This paper was one of the earliest to present initial efforts by the Classification Research Group (q.v.). In it he clearly outlined the need for classification in subject indexing, which, at the time he wrote, was not a commonplace understanding. In fact, some indexing systems were made in the first place specifically to avoid general classification systems which were out of date in all fast-moving disciplines, especially in the "hard" sciences. Vickery picked up Julia Pettee's work (q.v.) an the concealed classification in subject headings (1947) and added to it, mainly adopting concepts from the work of S. R. Ranganathan (q.v.). He had already published a paper an notation in classification, pointing out connections between notation, words, and the concepts which they represent. He was especially concerned about the structure of notational symbols as such symbols represented relationships among subjects. Vickery also emphasized that index terms cover all aspects of a subject so that, in addition to having a basis in classification, the ideal index system should also have standardized nomenclature, as weIl as show evidence of a systematic classing of elementary terms. The necessary linkage between system and terms should be one of a number of methods, notably:
  11. Ranganathan, S.R.: Facet analysis: fundamental categories (1985) 0.00
    0.0039674016 = product of:
      0.007934803 = sum of:
        0.007934803 = product of:
          0.015869606 = sum of:
            0.015869606 = weight(_text_:r in 3631) [ClassicSimilarity], result of:
              0.015869606 = score(doc=3631,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.12800737 = fieldWeight in 3631, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3631)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Among the theorists in the field of subject analysis in the twentieth century, none has been more influential than S. R. Ranganathan (1892-1972) of India, a mathematician by training who turned to librarianship and made some of the most far-reaching contributions to the theory of librarianship in general and subject analysis in particular. Dissatisfied with both the Dewey Decimal Classification and the Universal Decimal Classification, Ranganathan set out to develop his own system. His Colon Classification was first published in 1933 and went through six editions; the seventh edition was in progress when Ranganathan died in 1972. In the course of developing the Colon Classification, Ranganathan formulated a body of classification theory which was published in numerous writings, of which the best known are Elements of Library Classification (1945; 3rd ed., 1962) and Prolegomena to Library Classification (1967). Among the principles Ranganathan established, the most powerful and influential are those relating to facet analysis. Ranganathan demonstrated that facet analysis (breaking down subjects into their component parts) and synthesis (recombining these parts to fit the documents) provide the most viable approach to representing the contents of documents. Although the idea and use of facets, though not always called by that name, have been present for a long time (for instance, in the Dewey Decimal Classification and Charles A. Cutter's Expansive Classification), Ranganathan was the person who systematized the ideas and established principles for them. For his Colon Classification, Ranganathan identified five fundamental categories: Personality (P), Material (M), Energy (E), Space (S) and Time (T) and the citation order PMEST based an the idea of decreasing concreteness.
  12. Classification Research Group: ¬The need for a faceted classification as the basis of all methods of information retrieval (1985) 0.00
    0.0034006299 = product of:
      0.0068012597 = sum of:
        0.0068012597 = product of:
          0.013602519 = sum of:
            0.013602519 = weight(_text_:r in 3640) [ClassicSimilarity], result of:
              0.013602519 = score(doc=3640,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.1097206 = fieldWeight in 3640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The technique chosen was S. R. Ranganathan's facet analysis (q.v.). This method works from the bottom up: a term is categorized according to its parent class, as a kind, state, property, action, operation upon something, result of an Operation, agent, and so on. These modes of definition represent characteristics of division. Following the publication of this paper, the group worked for over ten years developing systems following this general pattern with various changes and experimental arrangements. Ranganathan's Colon Classification was the original of this type of method, but the Group rejected his contention that there are only five fundamental categories to be found in the knowledge base. They did, in fact, end up with varying numbers of categories in the experimental systems which they ultimately were to make. Notation was also recognized as a problem, being complex, illogical, lengthy, obscure and hard to understand. The Group tried to develop a rationale for notation, both as an ordering and as a finding device. To describe and represent a class, a notation could be long, but as a finding device, brevity would be preferable. The Group was to experiment with this aspect of classification and produce a number of interesting results. The Classification Research Group began meeting informally to discuss classification matters in 1952 and continues to meet, usually in London, to the present day. Most of the British authors whose work is presented in these pages have been members for most of the Group's life and continue in it. The Group maintains the basic position outlined in this paper to the present day. Its experimental approach has resulted in much more information about the nature and functions of classification systems. The ideal system has yet to be found. Classification research is still a promising area. The future calls for more experimentation based an reasoned approaches, following the example set by the Classification Research Group.
  13. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.00
    0.0034006299 = product of:
      0.0068012597 = sum of:
        0.0068012597 = product of:
          0.013602519 = sum of:
            0.013602519 = weight(_text_:r in 325) [ClassicSimilarity], result of:
              0.013602519 = score(doc=325,freq=2.0), product of:
                0.12397416 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.037451506 = queryNorm
                0.1097206 = fieldWeight in 325, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=325)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    

Years

Languages

  • e 46
  • d 3
  • f 3
  • chi 1
  • More… Less…

Types

  • a 50
  • m 3
  • s 1
  • More… Less…