Search (2 results, page 1 of 1)

  • × author_ss:"Zhai, Y."
  • × author_ss:"Ding, Y."
  1. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 633) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=633,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 633, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
    Type
    a
  2. Zhai, Y.; Ding, Y.; Zhang, H.: Innovation adoption : broadcasting versus virality (2021) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 162) [ClassicSimilarity], result of:
              0.007030784 = score(doc=162,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 162, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=162)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Diffusion channels are critical to determining the adoption scale, which leads to the ultimate impact of an innovation. The aim of this study is to develop an integrative understanding of the impact of two diffusion channels (i.e., broadcasting vs. virality) on innovation adoption. Using citations of a series of classic algorithms and the time series of co-authorship as the footprints of their diffusion trajectories, we propose a novel method to analyze the intertwining relationships between broadcasting and virality in the innovation diffusion process. Our findings show that broadcasting and virality have similar diffusion power, but play different roles across diffusion stages. Broadcasting is more powerful in the early stages but may be gradually caught up or even surpassed by virality in the later period. Meanwhile, diffusion speed in virality is significantly faster than broadcasting and members from virality channels tend to adopt the same innovation repetitively.
    Type
    a