Search (11 results, page 1 of 1)

  • × theme_ss:"Metadaten"
  • × theme_ss:"Semantic Web"
  1. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.02
    0.023691658 = product of:
      0.047383316 = sum of:
        0.047383316 = sum of:
          0.00994303 = weight(_text_:a in 2556) [ClassicSimilarity], result of:
            0.00994303 = score(doc=2556,freq=12.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.18723148 = fieldWeight in 2556, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
          0.037440285 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2556,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2556, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
      0.5 = coord(1/2)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Type
    a
  2. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.018720143 = product of:
      0.037440285 = sum of:
        0.037440285 = product of:
          0.07488057 = sum of:
            0.07488057 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.07488057 = score(doc=6048,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  3. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.010920083 = product of:
      0.021840166 = sum of:
        0.021840166 = product of:
          0.043680333 = sum of:
            0.043680333 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.043680333 = score(doc=3283,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Mehler, A.; Waltinger, U.: Automatic enrichment of metadata (2009) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 4840) [ClassicSimilarity], result of:
              0.0108246 = score(doc=4840,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 4840, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4840)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this talk we present a retrieval model based on social ontologies. More specifically, we utilize the Wikipedia category system in order to perform semantic searches. That is, textual input is used to build queries by means of which documents are retrieved which do not necessarily contain any query term but are semantically related to the input text by virtue of their content. We present a desktop which utilizes this search facility in a web-based environment - the so called eHumanities Desktop.
  5. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1210) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1210,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1210, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web activity is a W3C project whose goal is to enable a 'cooperative' Web where machines and humans can exchange electronic content that has clear-cut, unambiguous meaning. This vision is based on the automated sharing of metadata terms across Web applications. The declaration of schemas in metadata registries advance this vision by providing a common approach for the discovery, understanding, and exchange of semantics. However, many of the issues regarding registries are not clear, and ideas vary regarding their scope and purpose. Additionally, registry issues are often difficult to describe and comprehend without a working example. This article will explore the role of metadata registries and will describe three prototypes, written by the Dublin Core Metadata Initiative. The article will outline how the prototypes are being used to demonstrate and evaluate application scope, functional requirements, and technology solutions for metadata registries. Metadata schema registries are, in effect, databases of schemas that can trace an historical line back to shared data dictionaries and the registration process encouraged by the ISO/IEC 11179 community. New impetus for the development of registries has come with the development activities surrounding creation of the Semantic Web. The motivation for establishing registries arises from domain and standardization communities, and from the knowledge management community. Examples of current registry activity include:
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.
    Type
    a
  6. Baroncini, S.; Sartini, B.; Erp, M. Van; Tomasi, F.; Gangemi, A.: Is dc:subject enough? : A landscape on iconography and iconology statements of knowledge graphs in the semantic web (2023) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 1030) [ClassicSimilarity], result of:
              0.007654148 = score(doc=1030,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 1030, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1030)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the last few years, the size of Linked Open Data (LOD) describing artworks, in general or domain-specific Knowledge Graphs (KGs), is gradually increasing. This provides (art-)historians and Cultural Heritage professionals with a wealth of information to explore. Specifically, structured data about iconographical and iconological (icon) aspects, i.e. information about the subjects, concepts and meanings of artworks, are extremely valuable for the state-of-the-art of computational tools, e.g. content recognition through computer vision. Nevertheless, a data quality evaluation for art domains, fundamental for data reuse, is still missing. The purpose of this study is filling this gap with an overview of art-historical data quality in current KGs with a focus on the icon aspects. Design/methodology/approach This study's analyses are based on established KG evaluation methodologies, adapted to the domain by addressing requirements from art historians' theories. The authors first select several KGs according to Semantic Web principles. Then, the authors evaluate (1) their structures' suitability to describe icon information through quantitative and qualitative assessment and (2) their content, qualitatively assessed in terms of correctness and completeness. Findings This study's results reveal several issues on the current expression of icon information in KGs. The content evaluation shows that these domain-specific statements are generally correct but often not complete. The incompleteness is confirmed by the structure evaluation, which highlights the unsuitability of the KG schemas to describe icon information with the required granularity. Originality/value The main contribution of this work is an overview of the actual landscape of the icon information expressed in LOD. Therefore, it is valuable to cultural institutions by providing them a first domain-specific data quality evaluation. Since this study's results suggest that the selected domain information is underrepresented in Semantic Web datasets, the authors highlight the need for the creation and fostering of such information to provide a more thorough art-historical dimension to LOD.
    Type
    a
  7. Tillett, B.B.: AACR2 and metadata : library opportunities in the global semantic Web (2003) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5510) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5510,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5510, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5510)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Explores the opportunities for libraries to contribute to the proposed global "Semantic Web." Library name and subject authority files, including work that IFLA has done related to a new view of "Universal Bibliographic Control" in the Internet environment and the work underway in the U.S. and Europe, are making a reality of the virtual international authority file on the Web. The bibliographic and authority records created according to AACR2 reflect standards for metadata that libraries have provided for years. New opportunities for using these records in the digital world are described (interoperability), including mapping with Dublin Core metadata. AACR2 recently updated Chapter 9 on Electronic Resources. That process and highlights of the changes are described, including Library of Congress' rule interpretations.
    Type
    a
  8. Assumpção, F.S.; Santarem Segundo, J.E.; Ventura Amorim da Costa Santos, P.L.: RDA element sets and RDA value vocabularies : vocabularies for resource description in the Semantic Web (2015) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 2389) [ClassicSimilarity], result of:
              0.005740611 = score(doc=2389,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 2389, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2389)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Considering the need for metadata standards suitable for the Semantic Web, this paper describes the RDA Element Sets and the RDA Value Vocabularies that were created from attributes and relationships defined in Resource Description and Access (RDA). First, we present the vocabularies included in RDA Element Sets: the vocabularies of classes, of properties and of properties unconstrained by FRBR entities; and then we present the RDA Value Vocabularies, which are under development. As a conclusion, we highlight that these vocabularies can be used to meet the needs of different contexts due to the unconstrained properties and to the independence of the vocabularies of properties from the vocabularies of values and vice versa.
    Type
    a
  9. Bohne-Lang, A.: Semantische Metadaten für den Webauftritt einer Bibliothek (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3337) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3337,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3337, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Gartner, R.: Metadata : shaping knowledge from antiquity to the semantic web (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 731) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=731,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 731, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=731)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book offers a comprehensive guide to the world of metadata, from its origins in the ancient cities of the Middle East, to the Semantic Web of today. The author takes us on a journey through the centuries-old history of metadata up to the modern world of crowdsourcing and Google, showing how metadata works and what it is made of. The author explores how it has been used ideologically and how it can never be objective. He argues how central it is to human cultures and the way they develop. Metadata: Shaping Knowledge from Antiquity to the Semantic Web is for all readers with an interest in how we humans organize our knowledge and why this is important. It is suitable for those new to the subject as well as those know its basics. It also makes an excellent introduction for students of information science and librarianship.
  11. Niederée, C.: Metadaten als Bausteine des Semantic Web (2003) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 1761) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=1761,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 1761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1761)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a