Search (61 results, page 1 of 4)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2010 TO 2020}
  1. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.03
    0.03037249 = product of:
      0.06074498 = sum of:
        0.06074498 = sum of:
          0.0108246 = weight(_text_:a in 1431) [ClassicSimilarity], result of:
            0.0108246 = score(doc=1431,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.20383182 = fieldWeight in 1431, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=1431)
          0.04992038 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
            0.04992038 = score(doc=1431,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 1431, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1431)
      0.5 = coord(1/2)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
    Type
    a
  2. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.03
    0.025843859 = product of:
      0.051687717 = sum of:
        0.051687717 = sum of:
          0.0075639198 = weight(_text_:a in 2591) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=2591,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 2591, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2591)
          0.0441238 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
            0.0441238 = score(doc=2591,freq=4.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.27358043 = fieldWeight in 2591, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2591)
      0.5 = coord(1/2)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
    Type
    a
  3. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.02
    0.020948619 = product of:
      0.041897237 = sum of:
        0.041897237 = sum of:
          0.010696997 = weight(_text_:a in 664) [ClassicSimilarity], result of:
            0.010696997 = score(doc=664,freq=20.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.20142901 = fieldWeight in 664, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=664)
          0.03120024 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
            0.03120024 = score(doc=664,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 664, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=664)
      0.5 = coord(1/2)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
    Type
    a
  4. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 241) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=241,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 241, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=241)
          0.03120024 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
            0.03120024 = score(doc=241,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=241)
      0.5 = coord(1/2)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
    Type
    a
  5. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.01
    0.012480095 = product of:
      0.02496019 = sum of:
        0.02496019 = product of:
          0.04992038 = sum of:
            0.04992038 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.04992038 = score(doc=1484,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 9.2014 14:45:22
  6. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.00
    0.0033826875 = product of:
      0.006765375 = sum of:
        0.006765375 = product of:
          0.01353075 = sum of:
            0.01353075 = weight(_text_:a in 928) [ClassicSimilarity], result of:
              0.01353075 = score(doc=928,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25478977 = fieldWeight in 928, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=928)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
    Type
    a
  7. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.00
    0.0030491136 = product of:
      0.006098227 = sum of:
        0.006098227 = product of:
          0.012196454 = sum of:
            0.012196454 = weight(_text_:a in 1184) [ClassicSimilarity], result of:
              0.012196454 = score(doc=1184,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22966442 = fieldWeight in 1184, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1184)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabeled set and choosing data instances that maximize a learning function's effectiveness. In this article, we propose a novel two-stage active learning method for L2R that combines and exploits interesting properties of its constituent parts, thus being effective and practical. In the first stage, an association rule active sampling algorithm is used to select a very small but effective initial training set. In the second stage, a query-by-committee strategy trained with the first-stage set is used to iteratively select more examples until a preset labeling budget is met or a target effectiveness is achieved. We test our method with various LETOR benchmarking data sets and compare it with several baselines to show that it achieves good results using only a small portion of the original training sets.
    Type
    a
  8. Efron, M.: Linear time series models for term weighting in information retrieval (2010) 0.00
    0.0030444188 = product of:
      0.0060888375 = sum of:
        0.0060888375 = product of:
          0.012177675 = sum of:
            0.012177675 = weight(_text_:a in 3688) [ClassicSimilarity], result of:
              0.012177675 = score(doc=3688,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22931081 = fieldWeight in 3688, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3688)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Common measures of term importance in information retrieval (IR) rely on counts of term frequency; rare terms receive higher weight in document ranking than common terms receive. However, realistic scenarios yield additional information about terms in a collection. Of interest in this article is the temporal behavior of terms as a collection changes over time. We propose capturing each term's collection frequency at discrete time intervals over the lifespan of a corpus and analyzing the resulting time series. We hypothesize the collection frequency of a weakly discriminative term x at time t is predictable by a linear model of the term's prior observations. On the other hand, a linear time series model for a strong discriminators' collection frequency will yield a poor fit to the data. Operationalizing this hypothesis, we induce three time-based measures of term importance and test these against state-of-the-art term weighting models.
    Type
    a
  9. He, J.; Meij, E.; Rijke, M. de: Result diversification based on query-specific cluster ranking (2011) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 4355) [ClassicSimilarity], result of:
              0.011717974 = score(doc=4355,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 4355, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification is restricted to documents belonging to clusters that potentially contain a high percentage of relevant documents. Empirical results show that the proposed framework improves the performance of several existing diversification methods. The framework also gives rise to a simple yet effective cluster-based approach to result diversification that selects documents from different clusters to be included in a ranked list in a round robin fashion. We describe a set of experiments aimed at thoroughly analyzing the behavior of the two main components of the proposed diversification framework, ranking and selecting clusters for diversification. Both components have a crucial impact on the overall performance of our framework, but ranking clusters plays a more important role than selecting clusters. We also examine properties that clusters should have in order for our diversification framework to be effective. Most relevant documents should be contained in a small number of high-quality clusters, while there should be no dominantly large clusters. Also, documents from these high-quality clusters should have a diverse content. These properties are strongly correlated with the overall performance of the proposed diversification framework.
    Type
    a
  10. Lee, J.-T.; Seo, J.; Jeon, J.; Rim, H.-C.: Sentence-based relevance flow analysis for high accuracy retrieval (2011) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 4746) [ClassicSimilarity], result of:
              0.011717974 = score(doc=4746,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 4746, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Traditional ranking models for information retrieval lack the ability to make a clear distinction between relevant and nonrelevant documents at top ranks if both have similar bag-of-words representations with regard to a user query. We aim to go beyond the bag-of-words approach to document ranking in a new perspective, by representing each document as a sequence of sentences. We begin with an assumption that relevant documents are distinguishable from nonrelevant ones by sequential patterns of relevance degrees of sentences to a query. We introduce the notion of relevance flow, which refers to a stream of sentence-query relevance within a document. We then present a framework to learn a function for ranking documents effectively based on various features extracted from their relevance flows and leverage the output to enhance existing retrieval models. We validate the effectiveness of our approach by performing a number of retrieval experiments on three standard test collections, each comprising a different type of document: news articles, medical references, and blog posts. Experimental results demonstrate that the proposed approach can improve the retrieval performance at the top ranks significantly as compared with the state-of-the-art retrieval models regardless of document type.
    Type
    a
  11. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3469) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3469,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3469, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
    Type
    a
  12. Nunes, S.; Ribeiro, C.; David, G.: Term weighting based on document revision history (2011) 0.00
    0.0028047764 = product of:
      0.005609553 = sum of:
        0.005609553 = product of:
          0.011219106 = sum of:
            0.011219106 = weight(_text_:a in 4946) [ClassicSimilarity], result of:
              0.011219106 = score(doc=4946,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21126054 = fieldWeight in 4946, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4946)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In real-world information retrieval systems, the underlying document collection is rarely stable or definitive. This work is focused on the study of signals extracted from the content of documents at different points in time for the purpose of weighting individual terms in a document. The basic idea behind our proposals is that terms that have existed for a longer time in a document should have a greater weight. We propose 4 term weighting functions that use each document's history to estimate a current term score. To evaluate this thesis, we conduct 3 independent experiments using a collection of documents sampled from Wikipedia. In the first experiment, we use data from Wikipedia to judge each set of terms. In a second experiment, we use an external collection of tags from a popular social bookmarking service as a gold standard. In the third experiment, we crowdsource user judgments to collect feedback on term preference. Across all experiments results consistently support our thesis. We show that temporally aware measures, specifically the proposed revision term frequency and revision term frequency span, outperform a term-weighting measure based on raw term frequency alone.
    Type
    a
  13. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 3482) [ClassicSimilarity], result of:
              0.010739701 = score(doc=3482,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 3482, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3482)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Formulating high-quality queries is a key aspect of context-based search. However, determining the effectiveness of a query is challenging because multiple objectives, such as high precision and high recall, are usually involved. In this work, we study techniques that can be applied to evolve contextualized queries when the criteria for determining query quality are based on multiple objectives. We report on the results of three different strategies for evolving queries: (a) single-objective, (b) multiobjective with Pareto-based ranking, and (c) multiobjective with aggregative ranking. After a comprehensive evaluation with a large set of topics, we discuss the limitations of the single-objective approach and observe that both the Pareto-based and aggregative strategies are highly effective for evolving topical queries. In particular, our experiments lead us to conclude that the multiobjective techniques are superior to a baseline as well as to well-known and ad hoc query reformulation techniques.
    Type
    a
  14. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 4348) [ClassicSimilarity], result of:
              0.010739701 = score(doc=4348,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 4348, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4348)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranking authors is vital for identifying a researcher's impact and standing within a scientific field. There are many different ranking methods (e.g., citations, publications, h-index, PageRank, and weighted PageRank), but most of them are topic-independent. This paper proposes topic-dependent ranks based on the combination of a topic model and a weighted PageRank algorithm. The author-conference-topic (ACT) model was used to extract topic distribution of individual authors. Two ways for combining the ACT model with the PageRank algorithm are proposed: simple combination (I_PR) or using a topic distribution as a weighted vector for PageRank (PR_t). Information retrieval was chosen as the test field and representative authors for different topics at different time phases were identified. Principal component analysis (PCA) was applied to analyze the ranking difference between I_PR and PR_t.
    Type
    a
  15. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 278) [ClassicSimilarity], result of:
              0.010696997 = score(doc=278,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 278, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=278)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
    Type
    a
  16. Dang, E.K.F.; Luk, R.W.P.; Allan, J.; Ho, K.S.; Chung, K.F.L.; Lee, D.L.: ¬A new context-dependent term weight computed by boost and discount using relevance information (2010) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 4120) [ClassicSimilarity], result of:
              0.010148063 = score(doc=4120,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 4120, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4120)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We studied the effectiveness of a new class of context-dependent term weights for information retrieval. Unlike the traditional term frequency-inverse document frequency (TF-IDF), the new weighting of a term t in a document d depends not only on the occurrence statistics of t alone but also on the terms found within a text window (or "document-context") centered on t. We introduce a Boost and Discount (B&D) procedure which utilizes partial relevance information to compute the context-dependent term weights of query terms according to a logistic regression model. We investigate the effectiveness of the new term weights compared with the context-independent BM25 weights in the setting of relevance feedback. We performed experiments with title queries of the TREC-6, -7, -8, and 2005 collections, comparing the residual Mean Average Precision (MAP) measures obtained using B&D term weights and those obtained by a baseline using BM25 weights. Given either 10 or 20 relevance judgments of the top retrieved documents, using the new term weights yields improvement over the baseline for all collections tested. The MAP obtained with the new weights has relative improvement over the baseline by 3.3 to 15.2%, with statistical significance at the 95% confidence level across all four collections.
    Type
    a
  17. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1338) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1338,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1338, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1338)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
    Type
    a
  18. Van der Veer Martens, B.; Fleet, C. van: Opening the black box of "relevance work" : a domain analysis (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 247) [ClassicSimilarity], result of:
              0.00994303 = score(doc=247,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 247, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=247)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In response to Hjørland's recent call for a reconceptualization of the foundations of relevance, we suggest that the sociocognitive aspects of intermediation by information agencies, such as archives and libraries, are a necessary and unexplored part of the infrastructure of the subject knowledge domains central to his recommended "view of relevance informed by a social paradigm" (2010, p. 217). From a comparative analysis of documents from 39 graduate-level introductory courses in archives, reference, and strategic/competitive intelligence taught in 13 American Library Association-accredited library and information science (LIS) programs, we identify four defining sociocognitive dimensions of "relevance work" in information agencies within Hjørland's proposed framework for relevance: tasks, time, systems, and assessors. This study is intended to supply sociocognitive content from within the relevance work domain to support further domain analytic research, and to emphasize the importance of intermediary relevance work for all subject knowledge domains.
    Type
    a
  19. Karlsson, A.; Hammarfelt, B.; Steinhauer, H.J.; Falkman, G.; Olson, N.; Nelhans, G.; Nolin, J.: Modeling uncertainty in bibliometrics and information retrieval : an information fusion approach (2015) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 1696) [ClassicSimilarity], result of:
              0.009567685 = score(doc=1696,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 1696, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1696)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3017) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3017,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3017, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3017)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
    Type
    a

Languages

  • e 51
  • d 10

Types

  • a 59
  • el 2
  • r 1
  • More… Less…