Search (15 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Zeng, M.L."
  1. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.02
    0.021708746 = product of:
      0.04341749 = sum of:
        0.04341749 = sum of:
          0.008118451 = weight(_text_:a in 2654) [ClassicSimilarity], result of:
            0.008118451 = score(doc=2654,freq=18.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 2654, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
          0.03529904 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.03529904 = score(doc=2654,freq=4.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.21886435 = fieldWeight in 2654, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
      0.5 = coord(1/2)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Type
    a
  2. Smith, T.R.; Zeng, M.L.; ADEPT Knowledge Organization Team: Structured models of scientific concepts for organizing, accessing, and using learning materials (2003) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2715) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2715,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2715, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2715)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The knowledge represented in learning materials for the sciences is typically organized around term-based or "weakly-structured" models of concepts and their interrelationships. We introduce a "strongly-structured" model of scientific concepts that provides the foundation for a knowledge base (KB) of concept representations. An extension of the Alexandria Digital Library employs such a KB, together with associated collection and services, to support undergraduate leaming.
    Type
    a
  3. Zeng, M.L.; Chen, Y.: Features of an integrated thesaurus management and search system for the networked environment (2003) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3817) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3817,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3817, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3817)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports an integrated system that employs an open structure for managing the distributed resources (thesauri and databases) and integrates a thesaurus management system with a crossthesaurus search system. Describes the functions of the system that highlight the unique design for the networked environment.
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
    Type
    a
  4. Salaba, A.; Zeng, M.L.; Zumer, M.: Functional Requirements for Subject Authority Records (2006) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 279) [ClassicSimilarity], result of:
              0.009471525 = score(doc=279,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 279, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=279)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Continuing the tradition set by the FRBR model, a new IFLA working group was formed to examine the functional requirements for subject authority records (FRSAR). The focus of the FRSAR Working Group is on the user tasks and functional requirements of authority records for the Group 3 entities as defined by FRBR. This paper presents the Working Group's terms of reference and reports on initial activities and subject authority issues discussed.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  5. Zeng, M.L.; Kronenberg, F.; Molholt, P.: Toward a conceptual framework for complementary and alternative medicine : challenges and issues (2001) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 6740) [ClassicSimilarity], result of:
              0.008285859 = score(doc=6740,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 6740, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6740)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A problem facing information retrieval and exchange among international medical practitioners and researchers is the lack of a knowledge structure or conceptual framework that relates concepts used in the Western medical system to those used in non-Western medical systems. This paper presents challenges we have encountered in attempting to develop a general conceptual framework to cover concepts and terminology used for information retrieval in the field of complementary and alternative medicine. This is a broad field that has not been covered appropriately in knowledge organization systems such as classification schemes, thesauri, and terminology databases. The objective of the project is to improve significantly the efficiency and the quality of cross-language and cross-cultural information exchange and knowledge discovery by facilitating concept mapping and information retrieval between Western and Eastern medical traditions. Major facets of the conceptual framework include Diagnostic Categories, Therapeutic Preparations, Human Anatomy, Selected Diseases/Medical Conditions, and Basics of Traditional Systems. The paper discusses issues of subject coverage, the representation of medical concepts in the conceptual framework, incorporation of concept names that have existed in individual traditional systems, and the relationships among concepts. Findings reported are primarily from current work that focuses on Traditional Chinese Medicine.
    Type
    a
  6. Smith, T.R.; Zeng, M.L.: Concept maps supported by knowledge organization structures (2004) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 2620) [ClassicSimilarity], result of:
              0.008202582 = score(doc=2620,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 2620, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2620)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes the use of concept maps as one of the semantic tools employed in the ADEPT (Alexandria Digital Earth Prototype) Digital Learning Environment (DLE) for teaching undergraduate classes. The graphic representation of the conceptualizations is derived from the knowledge in stronglystructured models (SSMs) of concepts represented in one or more knowledge bases. Such knowledge bases function as a source of "reference" information about concepts in a given context, including information about their scientific representation, scientific semantics, manipulation, and interrelationships to other concepts.
    Type
    a
  7. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 3717) [ClassicSimilarity], result of:
              0.008202582 = score(doc=3717,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 3717, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
    Type
    a
  8. Chan, L.M.; Lin, X.; Zeng, M.L.: Structural and multilingual approaches to subject access on the Web (2000) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 507) [ClassicSimilarity], result of:
              0.008118451 = score(doc=507,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 507, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=507)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Zeng, M.L.: Knowledge Organization Systems (KOS) (2008) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2316) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2316,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2316, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2316)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge organization systems (KOS) can be described based on their structures (from flat to multidimensional) and main functions. The latter include eliminating ambiguity, controlling synonyms or equivalents, establishing explicit semantic relationships such as hierarchical and associative relationships, and presenting both relationships and properties of concepts in the knowledge models. Examples of KOS include lists, authority files, gazetteers, synonym rings, taxonomies and classification schemes, thesauri, and ontologies. These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts. The term knowledge organization systems (KOS) is intended to encompass all types of schemes for organizing information and promoting knowledge management, such as classification schemes, gazetteers, lexical databases, taxonomies, thesauri, and ontologies (Hodge 2000). These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts (Hill et al. 2002, Koch and Tudhope 2004). Embodied as (Web) services, they facilitate resource discovery and retrieval by acting as semantic road maps, thereby making possible a common orientation for indexers and future users, either human or machine (Koch and Tudhope 2003, 2004).
    Type
    a
  10. Zeng, M.L.; Chan, L.M.: Trends and issues in establishing interoperability among knowledge organization systems (2004) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 2224) [ClassicSimilarity], result of:
              0.007030784 = score(doc=2224,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 2224, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2224)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This report analyzes the methodologies used in establishing interoperability among knowledge organization systems (KOS) such as controlled vocabularies and classification schemes that present the organized interpretation of knowledge structures. The development and trends of KOS are discussed with reference to the online era and the Internet era. Selected current projects and activities addressing KOS interoperability issues are reviewed in terms of the languages and structures involved. The methodological analysis encompasses both conventional and new methods that have proven to be widely accepted, including derivation/modeling, translation/adaptation, satellite and leaf node linking, direct mapping, co-occurrence mapping, switching, linking through a temporary union list, and linking through a thesaurus server protocol. Methods used in link storage and management, as weIl as common issues regarding mapping and methodological options, are also presented. It is concluded that interoperability of KOS is an unavoidable issue and process in today's networked environment. There have been and will be many multilingual products and services, with many involving various structured systems. Results from recent efforts are encouraging.
    Type
    a
  11. Zeng, M.L.; Fan, W.: SKOS and its application in transferring traditional thesauri into networked knowledge organization systems (2008) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 2170) [ClassicSimilarity], result of:
              0.007030784 = score(doc=2170,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 2170, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In remembrance of Magda Heiner-Freiling who dedicated her professional efforts in promoting the sharing of subject access among world libraries, we sincerely wish to add our contribution to the endeavor she started and dreamed of finishing by writing this paper in Chinese, introducing SKOS and discussing its applications in transferring the largest controlled vocabulary in China, the Chinese Classified Thesaurus (CCT), into a SKOS-based knowledge organization system (KOS). The paper discusses the conceptual models of concept-based and term-based systems, the converting solutions of CCT, and the potential usage of a KOS registry built on SKOS and other Web-based protocols and technologies.
    Type
    a
  12. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part I : achieving interoperability at the schema level (2006) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1176) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1176,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1176, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The rapid growth of Internet resources and digital collections has been accompanied by a proliferation of metadata schemas, each of which has been designed based on the requirements of particular user communities, intended users, types of materials, subject domains, project needs, etc. Problems arise when building large digital libraries or repositories with metadata records that were prepared according to diverse schemas. This article (published in two parts) contains an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and applications, for the purposes of facilitating conversion and exchange of metadata and enabling cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level, record level, and repository level. Part I of the article intends to explain possible situations in which metadata schemas may be created or implemented, whether in individual projects or in integrated repositories. It also discusses approaches used at the schema level. Part II of the article will discuss metadata interoperability efforts at the record and repository levels.
    Type
    a
  13. Zeng, M.L.; Zumer, M.: Introducing FRSAD and mapping it with SKOS and other models (2009) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 3150) [ClassicSimilarity], result of:
              0.005740611 = score(doc=3150,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 3150, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3150)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Functional Requirements for Subject Authority Records (FRSAR) Working Group was formed in 2005 as the third IFLA working group of the FRBR family to address subject authority data issues and to investigate the direct and indirect uses of subject authority data by a wide range of users. This paper introduces the Functional Requirements for Subject Authority Data (FRSAD), the model developed by the FRSAR Working Group, and discusses it in the context of other related conceptual models defined in the specifications during recent years, including the British Standard BS8723-5: Structured vocabularies for information retrieval - Guide Part 5: Exchange formats and protocols for interoperability, W3C's SKOS Simple Knowledge Organization System Reference, and OWL Web Ontology Language Reference. These models enable the consideration of the functions of subject authority data and concept schemes at a higher level that is independent of any implementation, system, or specific context, while allowing us to focus on the semantics, structures, and interoperability of subject authority data.
  14. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part II : achieving interoperability at the record and repository levels (2006) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1177) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1177,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1177, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1177)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the second part of an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and their applications in order to facilitate the conversion and exchange of metadata and to enable cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level (discussed in Part I of the article), record level (discussed in Part II of the article), and repository level (also discussed in Part II). The results of efforts to improve interoperability may be observed from different perspectives as well, including element-based and value-based approaches. As discussed in Part I of this study, the results of efforts to improve interoperability can be observed at different levels: 1. Schema level - Efforts are focused on the elements of the schemas, being independent of any applications. The results usually appear as derived element sets or encoded schemas, crosswalks, application profiles, and element registries. 2. Record level - Efforts are intended to integrate the metadata records through the mapping of the elements according to the semantic meanings of these elements. Common results include converted records and new records resulting from combining values of existing records. 3. Repository level - With harvested or integrated records from varying sources, efforts at this level focus on mapping value strings associated with particular elements (e.g., terms associated with subject or format elements). The results enable cross-collection searching. In the following sections, we will continue to analyze interoperability efforts and methodologies, focusing on the record level and the repository level. It should be noted that the models to be discussed in this article are not always mutually exclusive. Sometimes, within a particular project, more than one method may be used.
    Type
    a
  15. Zeng, M.L.; Chan, L.M.: Semantic interoperability (2009) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3738) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3738,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3738, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3738)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a